用于大气辐射传输建模的物理信息神经网络

IF 2.3 3区 物理与天体物理 Q2 OPTICS Journal of Quantitative Spectroscopy & Radiative Transfer Pub Date : 2024-11-12 DOI:10.1016/j.jqsrt.2024.109253
Shai Zucker , Dmitry Batenkov , Michal Segal Rozenhaimer
{"title":"用于大气辐射传输建模的物理信息神经网络","authors":"Shai Zucker ,&nbsp;Dmitry Batenkov ,&nbsp;Michal Segal Rozenhaimer","doi":"10.1016/j.jqsrt.2024.109253","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the radiative transfer processes in the Earth’s atmosphere is crucial for accurate climate modeling and climate change predictions. These processes are governed by complex physical phenomena, which can be generally modeled by the radiative transfer equation (RTE). Solutions to the RTE are obtained by various methods including numerical (standard RTE solvers), stochastic (Monte-Carlo), and data-driven (machine-learning) approaches. This paper introduces a novel numerical approach utilizing a Physics-Informed Neural Network (PINN) to solve the RTE in atmospheric scenarios, applying physics constraints in a machine-learning framework. We show that our PINN model offers a flexible and efficient solution, enabling the simulation of radiance values using plane-parallel atmosphere, and under diverse conditions, including clouds and aerosols.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"331 ","pages":"Article 109253"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-informed neural networks for modeling atmospheric radiative transfer\",\"authors\":\"Shai Zucker ,&nbsp;Dmitry Batenkov ,&nbsp;Michal Segal Rozenhaimer\",\"doi\":\"10.1016/j.jqsrt.2024.109253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the radiative transfer processes in the Earth’s atmosphere is crucial for accurate climate modeling and climate change predictions. These processes are governed by complex physical phenomena, which can be generally modeled by the radiative transfer equation (RTE). Solutions to the RTE are obtained by various methods including numerical (standard RTE solvers), stochastic (Monte-Carlo), and data-driven (machine-learning) approaches. This paper introduces a novel numerical approach utilizing a Physics-Informed Neural Network (PINN) to solve the RTE in atmospheric scenarios, applying physics constraints in a machine-learning framework. We show that our PINN model offers a flexible and efficient solution, enabling the simulation of radiance values using plane-parallel atmosphere, and under diverse conditions, including clouds and aerosols.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"331 \",\"pages\":\"Article 109253\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003601\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003601","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

了解地球大气中的辐射传递过程对于准确的气候建模和气候变化预测至关重要。这些过程受复杂物理现象的支配,一般可以用辐射传递方程(RTE)来模拟。RTE 的解可以通过各种方法获得,包括数值(标准 RTE 求解器)、随机(蒙特卡洛)和数据驱动(机器学习)方法。本文介绍了一种新颖的数值方法,利用物理信息神经网络(PINN)求解大气场景中的 RTE,在机器学习框架中应用物理约束。我们的研究表明,我们的 PINN 模型提供了一种灵活高效的解决方案,能够在包括云层和气溶胶在内的各种条件下,利用平面平行大气模拟辐射值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physics-informed neural networks for modeling atmospheric radiative transfer
Understanding the radiative transfer processes in the Earth’s atmosphere is crucial for accurate climate modeling and climate change predictions. These processes are governed by complex physical phenomena, which can be generally modeled by the radiative transfer equation (RTE). Solutions to the RTE are obtained by various methods including numerical (standard RTE solvers), stochastic (Monte-Carlo), and data-driven (machine-learning) approaches. This paper introduces a novel numerical approach utilizing a Physics-Informed Neural Network (PINN) to solve the RTE in atmospheric scenarios, applying physics constraints in a machine-learning framework. We show that our PINN model offers a flexible and efficient solution, enabling the simulation of radiance values using plane-parallel atmosphere, and under diverse conditions, including clouds and aerosols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
期刊最新文献
Editorial Board Computational toolbox for scattering of focused light from flattened or elongated particles using spheroidal wavefunctions Hyperfine structure odd-parity configurations of the terbium atom, Part I: Levels with small J Complex refractive index from scattering measurements for an acoustically levitated single particle Comparative analysis of theories accounting for quantum effects in plasmonic nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1