验证具有一般系数的稀疏线性系统解的方法

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Applied Mathematics and Computation Pub Date : 2024-11-22 DOI:10.1016/j.amc.2024.129204
Takeshi Terao, Katsuhisa Ozaki
{"title":"验证具有一般系数的稀疏线性系统解的方法","authors":"Takeshi Terao, Katsuhisa Ozaki","doi":"10.1016/j.amc.2024.129204","DOIUrl":null,"url":null,"abstract":"This paper proposes a verification method for sparse linear systems <mml:math altimg=\"si1.svg\"><mml:mi>A</mml:mi><mml:mi>x</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi>b</mml:mi></mml:math> with general and nonsingular coefficient matrices. A verification method produces the error bound for a given approximate solution. Practical methods use one of two approaches. One approach is to verify the computed solution of the normal equation <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msup><mml:mi>A</mml:mi><mml:mi>x</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:msup><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msup><mml:mi>b</mml:mi></mml:math> by exploiting symmetric and positive definiteness; however, the condition number of <mml:math altimg=\"si3.svg\"><mml:msup><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msup><mml:mi>A</mml:mi></mml:math> is the square of that for <ce:italic>A</ce:italic>. The other approach applies an approximate inverse of <ce:italic>A</ce:italic>; however, the approximate inverse of <ce:italic>A</ce:italic> may be dense even if <ce:italic>A</ce:italic> is sparse. Additionally, several other methods have been proposed; however, they are considered impractical due to various issues. Here, this paper provides a computing method for verified error bounds using the previous verification method and the latest equilibration. The proposed method can reduce the fill-in and is applicable to many problems. Moreover, we will show the efficiency of an iterative refinement method to obtain accurate solutions.","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"18 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for verifying solutions of sparse linear systems with general coefficients\",\"authors\":\"Takeshi Terao, Katsuhisa Ozaki\",\"doi\":\"10.1016/j.amc.2024.129204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a verification method for sparse linear systems <mml:math altimg=\\\"si1.svg\\\"><mml:mi>A</mml:mi><mml:mi>x</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mi>b</mml:mi></mml:math> with general and nonsingular coefficient matrices. A verification method produces the error bound for a given approximate solution. Practical methods use one of two approaches. One approach is to verify the computed solution of the normal equation <mml:math altimg=\\\"si2.svg\\\"><mml:msup><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msup><mml:mi>A</mml:mi><mml:mi>x</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:msup><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msup><mml:mi>b</mml:mi></mml:math> by exploiting symmetric and positive definiteness; however, the condition number of <mml:math altimg=\\\"si3.svg\\\"><mml:msup><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msup><mml:mi>A</mml:mi></mml:math> is the square of that for <ce:italic>A</ce:italic>. The other approach applies an approximate inverse of <ce:italic>A</ce:italic>; however, the approximate inverse of <ce:italic>A</ce:italic> may be dense even if <ce:italic>A</ce:italic> is sparse. Additionally, several other methods have been proposed; however, they are considered impractical due to various issues. Here, this paper provides a computing method for verified error bounds using the previous verification method and the latest equilibration. The proposed method can reduce the fill-in and is applicable to many problems. Moreover, we will show the efficiency of an iterative refinement method to obtain accurate solutions.\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.amc.2024.129204\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.amc.2024.129204","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文针对具有一般非奇异系数矩阵的稀疏线性系统 Ax=b 提出了一种验证方法。验证方法可得出给定近似解的误差边界。实用方法有两种。一种方法是利用对称性和正定性来验证正则方程 ATAx=ATb 的计算解;然而,ATA 的条件数是 A 的条件数的平方。此外,还提出了其他几种方法,但由于各种问题,这些方法都被认为是不切实际的。本文利用之前的验证方法和最新的均衡,提供了一种验证误差边界的计算方法。所提出的方法可以减少填充,适用于很多问题。此外,我们还将展示迭代细化法获得精确解的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Method for verifying solutions of sparse linear systems with general coefficients
This paper proposes a verification method for sparse linear systems Ax=b with general and nonsingular coefficient matrices. A verification method produces the error bound for a given approximate solution. Practical methods use one of two approaches. One approach is to verify the computed solution of the normal equation ATAx=ATb by exploiting symmetric and positive definiteness; however, the condition number of ATA is the square of that for A. The other approach applies an approximate inverse of A; however, the approximate inverse of A may be dense even if A is sparse. Additionally, several other methods have been proposed; however, they are considered impractical due to various issues. Here, this paper provides a computing method for verified error bounds using the previous verification method and the latest equilibration. The proposed method can reduce the fill-in and is applicable to many problems. Moreover, we will show the efficiency of an iterative refinement method to obtain accurate solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
期刊最新文献
The effect of ecological compensation on a coevolutionary common pool resource game Optimal strategies for collective defined contribution plans when the stock and labor markets are co-integrated The kernel polynomial method based on Jacobi polynomials Method for verifying solutions of sparse linear systems with general coefficients A new nonlocal impulsive fractional differential hemivariational inclusions with an application to a frictional contact problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1