Mohammad Zeynoddin, Silvio José Gumiere, Hossein Bonakdari
{"title":"实施增强型深度机器学习,实现有效的浅层地下水位管理和预测","authors":"Mohammad Zeynoddin, Silvio José Gumiere, Hossein Bonakdari","doi":"10.1016/j.jhydrol.2024.132371","DOIUrl":null,"url":null,"abstract":"This study addresses the gap in understanding and forecasting shallow water table depth (WTD), a critical factor in groundwater resource management and agricultural productivity. Despite the importance of accurately forecasting WTD for sustainable water resource management, current methods frequently struggle to capture the complexities and dynamics of WTD fluctuations. In response, this research, which was conducted in Québec, Canada, leverages machine learning techniques—namely, extreme learning machines (ELMs) and long short-term memory (LSTM) networks, augmented by the Holt-Winters (HW) state-space method—to develop a comprehensive analysis and forecasting approach for shallow WTD. The datasets were recorded by 8 sensors with hourly temporal resolutions from June to September, covering the growing season. The objective was to increase forecast accuracy by employing a detailed structural analysis of WTD time series data, selecting appropriate forecast steps, and fine-tuning model inputs through statistical tests and model-agnostic interpretation methods. The performance was evaluated via various metrics, including the correlation coefficient (R), root mean square error (RMSE), mean absolute relative error (MARE), and Theil’s U accuracy and quality coefficients, across short- to long-term forecasts (1-, 12-, 24-, 48-, and 72-hour ahead). Integration of HW with the ELM and LSTM models markedly improved the forecasting capabilities, particularly for the LSTM model, which achieved high accuracy of R = 0.988 for 1-hour forecasts and low error rates (RMSE = 0.648 cm, MARE = 0.007, UI = 0.005, and UII = 0.010), although accuracy decreased for longer forecast horizons, resulting in the lowest accuracy for 72-hour forecasts, with R = 0.638, RMSE = 4.550 cm, MARE = 0.051, UI = 0.036, and UII = 0.071. Similarly, the ELM model showed promising results in short-term forecasts when coupled with HW (R = 0.988, RMSE = 0.676 cm, MARE = 0.007, UI = 0.005, and UII = 0.010) but experienced a decrease in performance accuracy over more extended forecast periods (R = 0.707, RMSE = 5.559 cm, MARE = 0.053, UI = 0.045, and UII = 0.089). Although the ELM model presented a negligible strong correlation in some forecast steps, the LSTM model offered consistently higher forecast accuracy and quality across all assessed horizons. The study demonstrates the superiority of the LSTM model in consistently providing more accurate forecasts, highlighting the importance of integrating HW to capture complex temporal patterns in hydrological forecasting. This advancement in forecasting WTD has substantial implications for enhancing groundwater resource management and agricultural decision-making, significantly contributing to sustainable water resource utilization and supporting agricultural productivity through informed data-driven practices.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"43 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing augmented deep Machine learning for effective shallow water table management and forecasting\",\"authors\":\"Mohammad Zeynoddin, Silvio José Gumiere, Hossein Bonakdari\",\"doi\":\"10.1016/j.jhydrol.2024.132371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the gap in understanding and forecasting shallow water table depth (WTD), a critical factor in groundwater resource management and agricultural productivity. Despite the importance of accurately forecasting WTD for sustainable water resource management, current methods frequently struggle to capture the complexities and dynamics of WTD fluctuations. In response, this research, which was conducted in Québec, Canada, leverages machine learning techniques—namely, extreme learning machines (ELMs) and long short-term memory (LSTM) networks, augmented by the Holt-Winters (HW) state-space method—to develop a comprehensive analysis and forecasting approach for shallow WTD. The datasets were recorded by 8 sensors with hourly temporal resolutions from June to September, covering the growing season. The objective was to increase forecast accuracy by employing a detailed structural analysis of WTD time series data, selecting appropriate forecast steps, and fine-tuning model inputs through statistical tests and model-agnostic interpretation methods. The performance was evaluated via various metrics, including the correlation coefficient (R), root mean square error (RMSE), mean absolute relative error (MARE), and Theil’s U accuracy and quality coefficients, across short- to long-term forecasts (1-, 12-, 24-, 48-, and 72-hour ahead). Integration of HW with the ELM and LSTM models markedly improved the forecasting capabilities, particularly for the LSTM model, which achieved high accuracy of R = 0.988 for 1-hour forecasts and low error rates (RMSE = 0.648 cm, MARE = 0.007, UI = 0.005, and UII = 0.010), although accuracy decreased for longer forecast horizons, resulting in the lowest accuracy for 72-hour forecasts, with R = 0.638, RMSE = 4.550 cm, MARE = 0.051, UI = 0.036, and UII = 0.071. Similarly, the ELM model showed promising results in short-term forecasts when coupled with HW (R = 0.988, RMSE = 0.676 cm, MARE = 0.007, UI = 0.005, and UII = 0.010) but experienced a decrease in performance accuracy over more extended forecast periods (R = 0.707, RMSE = 5.559 cm, MARE = 0.053, UI = 0.045, and UII = 0.089). Although the ELM model presented a negligible strong correlation in some forecast steps, the LSTM model offered consistently higher forecast accuracy and quality across all assessed horizons. The study demonstrates the superiority of the LSTM model in consistently providing more accurate forecasts, highlighting the importance of integrating HW to capture complex temporal patterns in hydrological forecasting. This advancement in forecasting WTD has substantial implications for enhancing groundwater resource management and agricultural decision-making, significantly contributing to sustainable water resource utilization and supporting agricultural productivity through informed data-driven practices.\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhydrol.2024.132371\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132371","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Implementing augmented deep Machine learning for effective shallow water table management and forecasting
This study addresses the gap in understanding and forecasting shallow water table depth (WTD), a critical factor in groundwater resource management and agricultural productivity. Despite the importance of accurately forecasting WTD for sustainable water resource management, current methods frequently struggle to capture the complexities and dynamics of WTD fluctuations. In response, this research, which was conducted in Québec, Canada, leverages machine learning techniques—namely, extreme learning machines (ELMs) and long short-term memory (LSTM) networks, augmented by the Holt-Winters (HW) state-space method—to develop a comprehensive analysis and forecasting approach for shallow WTD. The datasets were recorded by 8 sensors with hourly temporal resolutions from June to September, covering the growing season. The objective was to increase forecast accuracy by employing a detailed structural analysis of WTD time series data, selecting appropriate forecast steps, and fine-tuning model inputs through statistical tests and model-agnostic interpretation methods. The performance was evaluated via various metrics, including the correlation coefficient (R), root mean square error (RMSE), mean absolute relative error (MARE), and Theil’s U accuracy and quality coefficients, across short- to long-term forecasts (1-, 12-, 24-, 48-, and 72-hour ahead). Integration of HW with the ELM and LSTM models markedly improved the forecasting capabilities, particularly for the LSTM model, which achieved high accuracy of R = 0.988 for 1-hour forecasts and low error rates (RMSE = 0.648 cm, MARE = 0.007, UI = 0.005, and UII = 0.010), although accuracy decreased for longer forecast horizons, resulting in the lowest accuracy for 72-hour forecasts, with R = 0.638, RMSE = 4.550 cm, MARE = 0.051, UI = 0.036, and UII = 0.071. Similarly, the ELM model showed promising results in short-term forecasts when coupled with HW (R = 0.988, RMSE = 0.676 cm, MARE = 0.007, UI = 0.005, and UII = 0.010) but experienced a decrease in performance accuracy over more extended forecast periods (R = 0.707, RMSE = 5.559 cm, MARE = 0.053, UI = 0.045, and UII = 0.089). Although the ELM model presented a negligible strong correlation in some forecast steps, the LSTM model offered consistently higher forecast accuracy and quality across all assessed horizons. The study demonstrates the superiority of the LSTM model in consistently providing more accurate forecasts, highlighting the importance of integrating HW to capture complex temporal patterns in hydrological forecasting. This advancement in forecasting WTD has substantial implications for enhancing groundwater resource management and agricultural decision-making, significantly contributing to sustainable water resource utilization and supporting agricultural productivity through informed data-driven practices.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.