{"title":"蛋白质通过α螺旋通道和插入酶进行转运","authors":"Jingxia Chen, Xueyin Zhou, Yuqi Yang, Long Li","doi":"10.1016/j.str.2024.10.032","DOIUrl":null,"url":null,"abstract":"Protein translocation systems are essential for distributing proteins across various lipid membranes in cells. Cellular membranes, such as the endoplasmic reticulum (ER) membrane and mitochondrial inner membrane, require highly regulated protein translocation machineries that specifically allow the passage of protein polypeptides while blocking smaller molecules like ions and water. Key translocation systems include the Sec translocation channel, the protein insertases of the Oxa1 superfamily, and the translocases of the mitochondrial inner membrane (TIM). These machineries utilize different mechanisms to create pathways for proteins to move across membranes while preventing ion leakage during the dynamic translocation processes. In this review, we highlight recent advances in our understanding of these α-helical translocation machineries and examine their structures, mechanisms, and regulation. We also discuss the therapeutic potential of these translocation pathways and summarize the progress in drug development targeting these systems for treating diseases.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"80 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein translocation through α-helical channels and insertases\",\"authors\":\"Jingxia Chen, Xueyin Zhou, Yuqi Yang, Long Li\",\"doi\":\"10.1016/j.str.2024.10.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein translocation systems are essential for distributing proteins across various lipid membranes in cells. Cellular membranes, such as the endoplasmic reticulum (ER) membrane and mitochondrial inner membrane, require highly regulated protein translocation machineries that specifically allow the passage of protein polypeptides while blocking smaller molecules like ions and water. Key translocation systems include the Sec translocation channel, the protein insertases of the Oxa1 superfamily, and the translocases of the mitochondrial inner membrane (TIM). These machineries utilize different mechanisms to create pathways for proteins to move across membranes while preventing ion leakage during the dynamic translocation processes. In this review, we highlight recent advances in our understanding of these α-helical translocation machineries and examine their structures, mechanisms, and regulation. We also discuss the therapeutic potential of these translocation pathways and summarize the progress in drug development targeting these systems for treating diseases.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.10.032\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.10.032","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Protein translocation through α-helical channels and insertases
Protein translocation systems are essential for distributing proteins across various lipid membranes in cells. Cellular membranes, such as the endoplasmic reticulum (ER) membrane and mitochondrial inner membrane, require highly regulated protein translocation machineries that specifically allow the passage of protein polypeptides while blocking smaller molecules like ions and water. Key translocation systems include the Sec translocation channel, the protein insertases of the Oxa1 superfamily, and the translocases of the mitochondrial inner membrane (TIM). These machineries utilize different mechanisms to create pathways for proteins to move across membranes while preventing ion leakage during the dynamic translocation processes. In this review, we highlight recent advances in our understanding of these α-helical translocation machineries and examine their structures, mechanisms, and regulation. We also discuss the therapeutic potential of these translocation pathways and summarize the progress in drug development targeting these systems for treating diseases.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.