一种含有固有过氧离子的复合氧化物,用于催化酸中的氧进化反应

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-25 DOI:10.1021/jacs.4c11477
Jie Dai, Zihan Shen, Yu Chen, Mengran Li, Vanessa K. Peterson, Jiayi Tang, Xixi Wang, Yu Li, Daqin Guan, Chuan Zhou, Hainan Sun, Zhiwei Hu, Wei-Hsiang Huang, Chih-Wen Pao, Chien-Te Chen, Yinlong Zhu, Wei Zhou, Zongping Shao
{"title":"一种含有固有过氧离子的复合氧化物,用于催化酸中的氧进化反应","authors":"Jie Dai, Zihan Shen, Yu Chen, Mengran Li, Vanessa K. Peterson, Jiayi Tang, Xixi Wang, Yu Li, Daqin Guan, Chuan Zhou, Hainan Sun, Zhiwei Hu, Wei-Hsiang Huang, Chih-Wen Pao, Chien-Te Chen, Yinlong Zhu, Wei Zhou, Zongping Shao","doi":"10.1021/jacs.4c11477","DOIUrl":null,"url":null,"abstract":"Proton exchange membrane water electrolyzers powered by sustainable energy represent a cutting-edge technology for renewable hydrogen generation, while slow anodic oxygen evolution reaction (OER) kinetics still remains a formidable obstacle that necessitates basic comprehension for facilitating electrocatalysts’ design. Here, we report a low-iridium complex oxide La<sub>1.2</sub>Sr<sub>2.7</sub>IrO<sub>7.33</sub> with a unique hexagonal structure consisting of isolated Ir(V)O<sub>6</sub> octahedra and true peroxide O<sub>2</sub><sup>2–</sup> groups as a highly active and stable OER electrocatalyst under acidic conditions. Remarkably, La<sub>1.2</sub>Sr<sub>2.7</sub>IrO<sub>7.33</sub>, containing 59 wt % less iridium relative to the benchmark IrO<sub>2</sub>, shows about an order of magnitude higher mass activity, 6-folds higher intrinsic activity than the latter, and also surpasses the state-of-the-art Ir-based oxides ever reported. Combined electrochemical, spectroscopic, and density functional theory investigations reveal that La<sub>1.2</sub>Sr<sub>2.7</sub>IrO<sub>7.33</sub> follows the peroxide-ion participation mechanism under the OER condition, where the inherent peroxide ions with accessible nonbonded oxygen states are responsible for the high OER activity. This discovery offers an innovative strategy for designing advanced catalysts for various catalytic applications.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"16 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Complex Oxide Containing Inherent Peroxide Ions for Catalyzing Oxygen Evolution Reactions in Acid\",\"authors\":\"Jie Dai, Zihan Shen, Yu Chen, Mengran Li, Vanessa K. Peterson, Jiayi Tang, Xixi Wang, Yu Li, Daqin Guan, Chuan Zhou, Hainan Sun, Zhiwei Hu, Wei-Hsiang Huang, Chih-Wen Pao, Chien-Te Chen, Yinlong Zhu, Wei Zhou, Zongping Shao\",\"doi\":\"10.1021/jacs.4c11477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton exchange membrane water electrolyzers powered by sustainable energy represent a cutting-edge technology for renewable hydrogen generation, while slow anodic oxygen evolution reaction (OER) kinetics still remains a formidable obstacle that necessitates basic comprehension for facilitating electrocatalysts’ design. Here, we report a low-iridium complex oxide La<sub>1.2</sub>Sr<sub>2.7</sub>IrO<sub>7.33</sub> with a unique hexagonal structure consisting of isolated Ir(V)O<sub>6</sub> octahedra and true peroxide O<sub>2</sub><sup>2–</sup> groups as a highly active and stable OER electrocatalyst under acidic conditions. Remarkably, La<sub>1.2</sub>Sr<sub>2.7</sub>IrO<sub>7.33</sub>, containing 59 wt % less iridium relative to the benchmark IrO<sub>2</sub>, shows about an order of magnitude higher mass activity, 6-folds higher intrinsic activity than the latter, and also surpasses the state-of-the-art Ir-based oxides ever reported. Combined electrochemical, spectroscopic, and density functional theory investigations reveal that La<sub>1.2</sub>Sr<sub>2.7</sub>IrO<sub>7.33</sub> follows the peroxide-ion participation mechanism under the OER condition, where the inherent peroxide ions with accessible nonbonded oxygen states are responsible for the high OER activity. This discovery offers an innovative strategy for designing advanced catalysts for various catalytic applications.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c11477\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11477","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以可持续能源为动力的质子交换膜水电解槽是可再生制氢的前沿技术,而缓慢的阳极氧进化反应(OER)动力学仍然是一个巨大的障碍,需要对其进行基本了解,以促进电催化剂的设计。在此,我们报告了一种低铱复合氧化物 La1.2Sr2.7IrO7.33,它具有独特的六边形结构,由孤立的 Ir(V)O6 八面体和真正的过氧化物 O22- 基团组成,是一种在酸性条件下具有高活性和稳定性的 OER 电催化剂。值得注意的是,与基准氧化铱相比,La1.2Sr2.7IrO7.33 的铱含量减少了 59 wt %,但其质量活性却比后者高出约一个数量级,本征活性比后者高出 6 倍,而且还超过了迄今为止所报道的最先进的铱基氧化物。电化学、光谱和密度泛函理论的综合研究表明,La1.2Sr2.7IrO7.33 在 OER 条件下遵循过氧化物-离子参与机制,其中具有可访问非键氧态的固有过氧化物离子是产生高 OER 活性的原因。这一发现为设计用于各种催化应用的先进催化剂提供了一种创新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Complex Oxide Containing Inherent Peroxide Ions for Catalyzing Oxygen Evolution Reactions in Acid
Proton exchange membrane water electrolyzers powered by sustainable energy represent a cutting-edge technology for renewable hydrogen generation, while slow anodic oxygen evolution reaction (OER) kinetics still remains a formidable obstacle that necessitates basic comprehension for facilitating electrocatalysts’ design. Here, we report a low-iridium complex oxide La1.2Sr2.7IrO7.33 with a unique hexagonal structure consisting of isolated Ir(V)O6 octahedra and true peroxide O22– groups as a highly active and stable OER electrocatalyst under acidic conditions. Remarkably, La1.2Sr2.7IrO7.33, containing 59 wt % less iridium relative to the benchmark IrO2, shows about an order of magnitude higher mass activity, 6-folds higher intrinsic activity than the latter, and also surpasses the state-of-the-art Ir-based oxides ever reported. Combined electrochemical, spectroscopic, and density functional theory investigations reveal that La1.2Sr2.7IrO7.33 follows the peroxide-ion participation mechanism under the OER condition, where the inherent peroxide ions with accessible nonbonded oxygen states are responsible for the high OER activity. This discovery offers an innovative strategy for designing advanced catalysts for various catalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Nanoscale Evolution of Charge Transport Through C–H···π Interactions Two-Dimensional Superconductivity and Anomalous Vortex Dissipation in Newly Discovered Transition Metal Dichalcogenide-Based Superlattices Utilizing High X-ray Energy Photon-In Photon-Out Spectroscopies and X-ray Scattering to Experimentally Assess the Emergence of Electronic and Atomic Structure of ZnS Nanorods Precisely Controlling the Activation of an Iron-Locked Drug Generator in the Liver Sinusoid to Enhance Barrier Penetration and Reduction of Liver Fibrosis A Complex Oxide Containing Inherent Peroxide Ions for Catalyzing Oxygen Evolution Reactions in Acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1