Isaac Addai, Benedict Barnes, Isaac Kwame Dontwi, Kwaku Forkuoh Darkwah
{"title":"用于求解分数偏微分方程的修正分数幂级数法","authors":"Isaac Addai, Benedict Barnes, Isaac Kwame Dontwi, Kwaku Forkuoh Darkwah","doi":"10.1016/j.sciaf.2024.e02467","DOIUrl":null,"url":null,"abstract":"<div><div>The literature revealed that the Fractional Power Series Method (FPSM), which uses the Mittag-Leffler function in one parameter, has been gainfully applied in obtaining the solutions of fractional partial differential equations (FPDEs) in one dimension. However, the solutions in the multi-dimensional space have not been explored by researchers across the globe. The solutions of the FPDEs are feasible with the involvement of parameter <span><math><mi>α</mi></math></span> in the Mittag-Leffler function. However, the FPSM, which uses the Mittag-Leffler function in two parameters, has not been considered by researchers. Incorporating two parameters, <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>, in the Mittag-Leffler function of the FPSM is beyond reasonable doubt; it provides the continuum solution of the FPDEs and also yields more consistent and fast convergence of the solution in Holder’s spaces compared to the FPSM with the Mittag-Leffler function in one parameter. The FPSM is extended by replacing the Mittag-Leffler function in one parameter with the Mittag-Leffler function in two parameters. Also, the modified FPSM is applied to obtain the solutions of both heat and telegraph equations in multi-dimensions and one-dimension respectively. The solutions obtained by the FPSM with the Mittag-Leffler function in one parameter are compared with the modified FPSM using the Mittag-Leffler function in two parameters.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"26 ","pages":"Article e02467"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Fractional Power Series Method for solving fractional partial differential equations\",\"authors\":\"Isaac Addai, Benedict Barnes, Isaac Kwame Dontwi, Kwaku Forkuoh Darkwah\",\"doi\":\"10.1016/j.sciaf.2024.e02467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The literature revealed that the Fractional Power Series Method (FPSM), which uses the Mittag-Leffler function in one parameter, has been gainfully applied in obtaining the solutions of fractional partial differential equations (FPDEs) in one dimension. However, the solutions in the multi-dimensional space have not been explored by researchers across the globe. The solutions of the FPDEs are feasible with the involvement of parameter <span><math><mi>α</mi></math></span> in the Mittag-Leffler function. However, the FPSM, which uses the Mittag-Leffler function in two parameters, has not been considered by researchers. Incorporating two parameters, <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>, in the Mittag-Leffler function of the FPSM is beyond reasonable doubt; it provides the continuum solution of the FPDEs and also yields more consistent and fast convergence of the solution in Holder’s spaces compared to the FPSM with the Mittag-Leffler function in one parameter. The FPSM is extended by replacing the Mittag-Leffler function in one parameter with the Mittag-Leffler function in two parameters. Also, the modified FPSM is applied to obtain the solutions of both heat and telegraph equations in multi-dimensions and one-dimension respectively. The solutions obtained by the FPSM with the Mittag-Leffler function in one parameter are compared with the modified FPSM using the Mittag-Leffler function in two parameters.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"26 \",\"pages\":\"Article e02467\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227624004095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227624004095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Modified Fractional Power Series Method for solving fractional partial differential equations
The literature revealed that the Fractional Power Series Method (FPSM), which uses the Mittag-Leffler function in one parameter, has been gainfully applied in obtaining the solutions of fractional partial differential equations (FPDEs) in one dimension. However, the solutions in the multi-dimensional space have not been explored by researchers across the globe. The solutions of the FPDEs are feasible with the involvement of parameter in the Mittag-Leffler function. However, the FPSM, which uses the Mittag-Leffler function in two parameters, has not been considered by researchers. Incorporating two parameters, and , in the Mittag-Leffler function of the FPSM is beyond reasonable doubt; it provides the continuum solution of the FPDEs and also yields more consistent and fast convergence of the solution in Holder’s spaces compared to the FPSM with the Mittag-Leffler function in one parameter. The FPSM is extended by replacing the Mittag-Leffler function in one parameter with the Mittag-Leffler function in two parameters. Also, the modified FPSM is applied to obtain the solutions of both heat and telegraph equations in multi-dimensions and one-dimension respectively. The solutions obtained by the FPSM with the Mittag-Leffler function in one parameter are compared with the modified FPSM using the Mittag-Leffler function in two parameters.