{"title":"凸壳的等周问题和随机游走的大偏差率函数","authors":"Vladislav Vysotsky","doi":"10.1016/j.spa.2024.104519","DOIUrl":null,"url":null,"abstract":"<div><div>We study the asymptotic behaviour of the most likely trajectories of a planar random walk that result in large deviations of the area of their convex hull. If the Laplace transform of the increments is finite on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, such a scaled limit trajectory <span><math><mi>h</mi></math></span> solves the inhomogeneous anisotropic isoperimetric problem for the convex hull, where the usual length of <span><math><mi>h</mi></math></span> is replaced by the large deviations rate functional <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>I</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math></span> and <span><math><mi>I</mi></math></span> is the rate function of the increments. Assuming that the distribution of increments is not supported on a half-plane, we show that the optimal trajectories are convex and satisfy the Euler–Lagrange equation, which we solve explicitly for every <span><math><mi>I</mi></math></span>. The shape of these trajectories resembles the optimizers in the isoperimetric inequality for the Minkowski plane, found by Busemann (1947).</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"180 ","pages":"Article 104519"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The isoperimetric problem for convex hulls and large deviations rate functionals of random walks\",\"authors\":\"Vladislav Vysotsky\",\"doi\":\"10.1016/j.spa.2024.104519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the asymptotic behaviour of the most likely trajectories of a planar random walk that result in large deviations of the area of their convex hull. If the Laplace transform of the increments is finite on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, such a scaled limit trajectory <span><math><mi>h</mi></math></span> solves the inhomogeneous anisotropic isoperimetric problem for the convex hull, where the usual length of <span><math><mi>h</mi></math></span> is replaced by the large deviations rate functional <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>I</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math></span> and <span><math><mi>I</mi></math></span> is the rate function of the increments. Assuming that the distribution of increments is not supported on a half-plane, we show that the optimal trajectories are convex and satisfy the Euler–Lagrange equation, which we solve explicitly for every <span><math><mi>I</mi></math></span>. The shape of these trajectories resembles the optimizers in the isoperimetric inequality for the Minkowski plane, found by Busemann (1947).</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"180 \",\"pages\":\"Article 104519\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924002278\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002278","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了平面随机漫步最可能轨迹的渐近行为,这些轨迹会导致其凸壳面积出现较大偏差。如果增量的拉普拉斯变换在 R2 上是有限的,那么这样的缩放极限轨迹 h 解决了凸壳的非均质各向异性等距问题,其中 h 的通常长度由大偏差率函数 ∫01I(h′(t))dt 代替,I 是增量的率函数。假定增量的分布不在半平面上,我们将证明最优轨迹是凸的,并且满足欧拉-拉格朗日方程,我们对每个 I 都进行了显式求解。
The isoperimetric problem for convex hulls and large deviations rate functionals of random walks
We study the asymptotic behaviour of the most likely trajectories of a planar random walk that result in large deviations of the area of their convex hull. If the Laplace transform of the increments is finite on , such a scaled limit trajectory solves the inhomogeneous anisotropic isoperimetric problem for the convex hull, where the usual length of is replaced by the large deviations rate functional and is the rate function of the increments. Assuming that the distribution of increments is not supported on a half-plane, we show that the optimal trajectories are convex and satisfy the Euler–Lagrange equation, which we solve explicitly for every . The shape of these trajectories resembles the optimizers in the isoperimetric inequality for the Minkowski plane, found by Busemann (1947).
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.