混合条件下图上马尔可夫随机场的模型选择

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Stochastic Processes and their Applications Pub Date : 2024-11-14 DOI:10.1016/j.spa.2024.104523
Florencia Leonardi , Magno T.F. Severino
{"title":"混合条件下图上马尔可夫随机场的模型选择","authors":"Florencia Leonardi ,&nbsp;Magno T.F. Severino","doi":"10.1016/j.spa.2024.104523","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a global model selection criterion to estimate the graph of conditional dependencies of a random vector. By global criterion, we mean optimizing a function over the set of possible graphs, eliminating the need to estimate individual neighborhoods and subsequently combine them to estimate the graph. We prove the almost sure convergence of the graph estimator. This convergence holds, provided the data is a realization of a multivariate stochastic process that satisfies a polynomial mixing condition. These are the first results to show the consistency of a model selection criterion for Markov random fields on graphs under non-independent data.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"180 ","pages":"Article 104523"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model selection for Markov random fields on graphs under a mixing condition\",\"authors\":\"Florencia Leonardi ,&nbsp;Magno T.F. Severino\",\"doi\":\"10.1016/j.spa.2024.104523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a global model selection criterion to estimate the graph of conditional dependencies of a random vector. By global criterion, we mean optimizing a function over the set of possible graphs, eliminating the need to estimate individual neighborhoods and subsequently combine them to estimate the graph. We prove the almost sure convergence of the graph estimator. This convergence holds, provided the data is a realization of a multivariate stochastic process that satisfies a polynomial mixing condition. These are the first results to show the consistency of a model selection criterion for Markov random fields on graphs under non-independent data.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"180 \",\"pages\":\"Article 104523\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030441492400231X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492400231X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种全局模型选择准则,用于估算随机向量的条件依赖关系图。我们所说的全局标准是指在可能的图形集合上优化一个函数,从而无需估计单个邻域,然后再将它们组合起来估计图形。我们证明了图估计器几乎肯定收敛。只要数据是满足多项式混合条件的多变量随机过程的实现,这种收敛性就会成立。这些结果首次证明了在非独立数据条件下,图上马尔可夫随机场的模型选择准则的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model selection for Markov random fields on graphs under a mixing condition
We propose a global model selection criterion to estimate the graph of conditional dependencies of a random vector. By global criterion, we mean optimizing a function over the set of possible graphs, eliminating the need to estimate individual neighborhoods and subsequently combine them to estimate the graph. We prove the almost sure convergence of the graph estimator. This convergence holds, provided the data is a realization of a multivariate stochastic process that satisfies a polynomial mixing condition. These are the first results to show the consistency of a model selection criterion for Markov random fields on graphs under non-independent data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
期刊最新文献
Editorial Board Rate of escape of the conditioned two-dimensional simple random walk Wasserstein convergence rates for empirical measures of random subsequence of {nα} Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation Correlation structure and resonant pairs for arithmetic random waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1