Haehyun Min , Ye Jin Ji , Do Yeong Kim , Yangguen Ju , Chang Geun Yoo , Young Jin Kim , Sung Bong Kang
{"title":"用功能化二氧化硅引导 Ni/SiO2 的催化特性和反应活性,用于甲烷干法转化","authors":"Haehyun Min , Ye Jin Ji , Do Yeong Kim , Yangguen Ju , Chang Geun Yoo , Young Jin Kim , Sung Bong Kang","doi":"10.1016/j.apsadv.2024.100663","DOIUrl":null,"url":null,"abstract":"<div><div>The dry reforming of methane (DRM) is a promising catalytic reaction for converting greenhouse gases (CH<sub>4</sub> and CO<sub>2</sub>) into valuable syngas. Despite the advantages of silica as a catalyst support, its inert nature limits its application in DRM due to reduced binding affinity with nickel. Here, we developed Ni-impregnated silica catalysts exhibiting a bimodal pore system in which silica supports were synthesized by tuning the ratio of aminopropyl triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS). The Ni/silica catalyst prepared by the intermediate concentration of APTES exhibited a unique combination of acidic and basic properties, enhancing DRM activity and catalytic durability. The catalysts displayed a favorable nickel size distribution, with smaller Ni particles in intermediate ratio silica, overcoming the limitations of conventional silica-based catalysts. Our findings demonstrate the suitable catalytic characteristics of Ni/synthesized-SiO<sub>2</sub> for the dry reforming of methane.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"24 ","pages":"Article 100663"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steering catalytic property and reactivity of Ni/SiO2 by functionalized silica for dry reforming of methane\",\"authors\":\"Haehyun Min , Ye Jin Ji , Do Yeong Kim , Yangguen Ju , Chang Geun Yoo , Young Jin Kim , Sung Bong Kang\",\"doi\":\"10.1016/j.apsadv.2024.100663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The dry reforming of methane (DRM) is a promising catalytic reaction for converting greenhouse gases (CH<sub>4</sub> and CO<sub>2</sub>) into valuable syngas. Despite the advantages of silica as a catalyst support, its inert nature limits its application in DRM due to reduced binding affinity with nickel. Here, we developed Ni-impregnated silica catalysts exhibiting a bimodal pore system in which silica supports were synthesized by tuning the ratio of aminopropyl triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS). The Ni/silica catalyst prepared by the intermediate concentration of APTES exhibited a unique combination of acidic and basic properties, enhancing DRM activity and catalytic durability. The catalysts displayed a favorable nickel size distribution, with smaller Ni particles in intermediate ratio silica, overcoming the limitations of conventional silica-based catalysts. Our findings demonstrate the suitable catalytic characteristics of Ni/synthesized-SiO<sub>2</sub> for the dry reforming of methane.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"24 \",\"pages\":\"Article 100663\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523924000916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Steering catalytic property and reactivity of Ni/SiO2 by functionalized silica for dry reforming of methane
The dry reforming of methane (DRM) is a promising catalytic reaction for converting greenhouse gases (CH4 and CO2) into valuable syngas. Despite the advantages of silica as a catalyst support, its inert nature limits its application in DRM due to reduced binding affinity with nickel. Here, we developed Ni-impregnated silica catalysts exhibiting a bimodal pore system in which silica supports were synthesized by tuning the ratio of aminopropyl triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS). The Ni/silica catalyst prepared by the intermediate concentration of APTES exhibited a unique combination of acidic and basic properties, enhancing DRM activity and catalytic durability. The catalysts displayed a favorable nickel size distribution, with smaller Ni particles in intermediate ratio silica, overcoming the limitations of conventional silica-based catalysts. Our findings demonstrate the suitable catalytic characteristics of Ni/synthesized-SiO2 for the dry reforming of methane.