通过过量锂诱导的晶界相促进镍钴锰酸锂中掺杂钨的均匀性

Junjie Wang , Yucen Yan , Zilan Zhao , Jiayi Li , Gui Luo , Duo Deng , Wenjie Peng , Mingxia Dong , Zhixing Wang , Guochun Yan , Huajun Guo , Hui Duan , Lingjun Li , Shihao Feng , Xing Ou , Junchao Zheng , Jiexi Wang
{"title":"通过过量锂诱导的晶界相促进镍钴锰酸锂中掺杂钨的均匀性","authors":"Junjie Wang ,&nbsp;Yucen Yan ,&nbsp;Zilan Zhao ,&nbsp;Jiayi Li ,&nbsp;Gui Luo ,&nbsp;Duo Deng ,&nbsp;Wenjie Peng ,&nbsp;Mingxia Dong ,&nbsp;Zhixing Wang ,&nbsp;Guochun Yan ,&nbsp;Huajun Guo ,&nbsp;Hui Duan ,&nbsp;Lingjun Li ,&nbsp;Shihao Feng ,&nbsp;Xing Ou ,&nbsp;Junchao Zheng ,&nbsp;Jiexi Wang","doi":"10.1016/j.apmate.2024.100248","DOIUrl":null,"url":null,"abstract":"<div><div>LiNiO<sub>2</sub> (LNO) is one of the most promising cathode materials for lithium-ion batteries. Tungsten element in enhancing the stability of LNO has been researched extensively. However, the understanding of the specific doping process and existing form of W are still not perfect. This study proposes a lithium-induced grain boundary phase W doping mechanism. The results demonstrate that the introduced W atoms first react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles. With the increase of lithium ratio, W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping. The feasibility of grain boundary phase doping is verified by first principles calculation. Furthermore, it is found that the Li<sub>2</sub>WO<sub>4</sub> grain boundary phase is an excellent lithium ion conductor, which can protect the cathode surface and improve the rate performance. The doped W can alleviate the harmful H2↔H3 phase transition, thereby inhibiting the generation of microcracks, and improving the electrochemical performance. Consequently, the 0.3 ​wt% W-doped sample provides a significant improved capacity retention of 88.5 ​% compared with the pristine LNO (80.7 ​%) after 100 cycles at 2.8–4.3 ​V under 1C.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100248"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting homogeneous tungsten doping in LiNiO2 through a grain boundary phase induced by excessive lithium\",\"authors\":\"Junjie Wang ,&nbsp;Yucen Yan ,&nbsp;Zilan Zhao ,&nbsp;Jiayi Li ,&nbsp;Gui Luo ,&nbsp;Duo Deng ,&nbsp;Wenjie Peng ,&nbsp;Mingxia Dong ,&nbsp;Zhixing Wang ,&nbsp;Guochun Yan ,&nbsp;Huajun Guo ,&nbsp;Hui Duan ,&nbsp;Lingjun Li ,&nbsp;Shihao Feng ,&nbsp;Xing Ou ,&nbsp;Junchao Zheng ,&nbsp;Jiexi Wang\",\"doi\":\"10.1016/j.apmate.2024.100248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LiNiO<sub>2</sub> (LNO) is one of the most promising cathode materials for lithium-ion batteries. Tungsten element in enhancing the stability of LNO has been researched extensively. However, the understanding of the specific doping process and existing form of W are still not perfect. This study proposes a lithium-induced grain boundary phase W doping mechanism. The results demonstrate that the introduced W atoms first react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles. With the increase of lithium ratio, W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping. The feasibility of grain boundary phase doping is verified by first principles calculation. Furthermore, it is found that the Li<sub>2</sub>WO<sub>4</sub> grain boundary phase is an excellent lithium ion conductor, which can protect the cathode surface and improve the rate performance. The doped W can alleviate the harmful H2↔H3 phase transition, thereby inhibiting the generation of microcracks, and improving the electrochemical performance. Consequently, the 0.3 ​wt% W-doped sample provides a significant improved capacity retention of 88.5 ​% compared with the pristine LNO (80.7 ​%) after 100 cycles at 2.8–4.3 ​V under 1C.</div></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"4 1\",\"pages\":\"Article 100248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

LiNiO2 (LNO)是最有前途的锂离子电池正极材料之一。钨元素在提高 LNO 稳定性方面的作用已被广泛研究。然而,人们对钨的具体掺杂过程和现有形态的认识还不够完善。本研究提出了一种锂诱导的晶界相 W 掺杂机制。结果表明,引入的 W 原子首先与锂源发生反应,在原生粒子的晶界处生成 Li-W-O 相。随着锂比例的增加,W 原子逐渐从晶界相扩散到内部层状结构,从而实现 W 掺杂。第一性原理计算验证了晶界相掺杂的可行性。此外,研究还发现 Li2WO4 晶界相是一种优良的锂离子导体,可以保护正极表面并提高速率性能。掺杂的 W 可以缓解有害的 H2↔H3 相变,从而抑制微裂缝的产生,改善电化学性能。因此,与原始 LNO(80.7%)相比,掺杂了 0.3 wt% W 的样品在 1C 下于 2.8-4.3 V 条件下循环 100 次后,容量保持率显著提高了 88.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Promoting homogeneous tungsten doping in LiNiO2 through a grain boundary phase induced by excessive lithium
LiNiO2 (LNO) is one of the most promising cathode materials for lithium-ion batteries. Tungsten element in enhancing the stability of LNO has been researched extensively. However, the understanding of the specific doping process and existing form of W are still not perfect. This study proposes a lithium-induced grain boundary phase W doping mechanism. The results demonstrate that the introduced W atoms first react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles. With the increase of lithium ratio, W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping. The feasibility of grain boundary phase doping is verified by first principles calculation. Furthermore, it is found that the Li2WO4 grain boundary phase is an excellent lithium ion conductor, which can protect the cathode surface and improve the rate performance. The doped W can alleviate the harmful H2↔H3 phase transition, thereby inhibiting the generation of microcracks, and improving the electrochemical performance. Consequently, the 0.3 ​wt% W-doped sample provides a significant improved capacity retention of 88.5 ​% compared with the pristine LNO (80.7 ​%) after 100 cycles at 2.8–4.3 ​V under 1C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Multicolor chiral perovskite nanowire films with strong and tailorable circularly polarized luminescence Frustrated lewis pairs regulated solid polymer electrolyte enables ultralong cycles of lithium metal batteries Coupling Enteromorpha prolifera-derived N-doped biochar with Cu-Mo2C clusters for selective CO2 hydrogenation to CO Enhanced photoelectric and thermoelectric coupling factor in BiMn2O5 ferroelectric film Electrolyte-independent and sustained inorganic-rich layer with functional anion aggregates for stable lithium metal electrode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1