Junjie Wang , Yucen Yan , Zilan Zhao , Jiayi Li , Gui Luo , Duo Deng , Wenjie Peng , Mingxia Dong , Zhixing Wang , Guochun Yan , Huajun Guo , Hui Duan , Lingjun Li , Shihao Feng , Xing Ou , Junchao Zheng , Jiexi Wang
{"title":"通过过量锂诱导的晶界相促进镍钴锰酸锂中掺杂钨的均匀性","authors":"Junjie Wang , Yucen Yan , Zilan Zhao , Jiayi Li , Gui Luo , Duo Deng , Wenjie Peng , Mingxia Dong , Zhixing Wang , Guochun Yan , Huajun Guo , Hui Duan , Lingjun Li , Shihao Feng , Xing Ou , Junchao Zheng , Jiexi Wang","doi":"10.1016/j.apmate.2024.100248","DOIUrl":null,"url":null,"abstract":"<div><div>LiNiO<sub>2</sub> (LNO) is one of the most promising cathode materials for lithium-ion batteries. Tungsten element in enhancing the stability of LNO has been researched extensively. However, the understanding of the specific doping process and existing form of W are still not perfect. This study proposes a lithium-induced grain boundary phase W doping mechanism. The results demonstrate that the introduced W atoms first react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles. With the increase of lithium ratio, W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping. The feasibility of grain boundary phase doping is verified by first principles calculation. Furthermore, it is found that the Li<sub>2</sub>WO<sub>4</sub> grain boundary phase is an excellent lithium ion conductor, which can protect the cathode surface and improve the rate performance. The doped W can alleviate the harmful H2↔H3 phase transition, thereby inhibiting the generation of microcracks, and improving the electrochemical performance. Consequently, the 0.3 wt% W-doped sample provides a significant improved capacity retention of 88.5 % compared with the pristine LNO (80.7 %) after 100 cycles at 2.8–4.3 V under 1C.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100248"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting homogeneous tungsten doping in LiNiO2 through a grain boundary phase induced by excessive lithium\",\"authors\":\"Junjie Wang , Yucen Yan , Zilan Zhao , Jiayi Li , Gui Luo , Duo Deng , Wenjie Peng , Mingxia Dong , Zhixing Wang , Guochun Yan , Huajun Guo , Hui Duan , Lingjun Li , Shihao Feng , Xing Ou , Junchao Zheng , Jiexi Wang\",\"doi\":\"10.1016/j.apmate.2024.100248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LiNiO<sub>2</sub> (LNO) is one of the most promising cathode materials for lithium-ion batteries. Tungsten element in enhancing the stability of LNO has been researched extensively. However, the understanding of the specific doping process and existing form of W are still not perfect. This study proposes a lithium-induced grain boundary phase W doping mechanism. The results demonstrate that the introduced W atoms first react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles. With the increase of lithium ratio, W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping. The feasibility of grain boundary phase doping is verified by first principles calculation. Furthermore, it is found that the Li<sub>2</sub>WO<sub>4</sub> grain boundary phase is an excellent lithium ion conductor, which can protect the cathode surface and improve the rate performance. The doped W can alleviate the harmful H2↔H3 phase transition, thereby inhibiting the generation of microcracks, and improving the electrochemical performance. Consequently, the 0.3 wt% W-doped sample provides a significant improved capacity retention of 88.5 % compared with the pristine LNO (80.7 %) after 100 cycles at 2.8–4.3 V under 1C.</div></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"4 1\",\"pages\":\"Article 100248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
LiNiO2 (LNO)是最有前途的锂离子电池正极材料之一。钨元素在提高 LNO 稳定性方面的作用已被广泛研究。然而,人们对钨的具体掺杂过程和现有形态的认识还不够完善。本研究提出了一种锂诱导的晶界相 W 掺杂机制。结果表明,引入的 W 原子首先与锂源发生反应,在原生粒子的晶界处生成 Li-W-O 相。随着锂比例的增加,W 原子逐渐从晶界相扩散到内部层状结构,从而实现 W 掺杂。第一性原理计算验证了晶界相掺杂的可行性。此外,研究还发现 Li2WO4 晶界相是一种优良的锂离子导体,可以保护正极表面并提高速率性能。掺杂的 W 可以缓解有害的 H2↔H3 相变,从而抑制微裂缝的产生,改善电化学性能。因此,与原始 LNO(80.7%)相比,掺杂了 0.3 wt% W 的样品在 1C 下于 2.8-4.3 V 条件下循环 100 次后,容量保持率显著提高了 88.5%。
Promoting homogeneous tungsten doping in LiNiO2 through a grain boundary phase induced by excessive lithium
LiNiO2 (LNO) is one of the most promising cathode materials for lithium-ion batteries. Tungsten element in enhancing the stability of LNO has been researched extensively. However, the understanding of the specific doping process and existing form of W are still not perfect. This study proposes a lithium-induced grain boundary phase W doping mechanism. The results demonstrate that the introduced W atoms first react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles. With the increase of lithium ratio, W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping. The feasibility of grain boundary phase doping is verified by first principles calculation. Furthermore, it is found that the Li2WO4 grain boundary phase is an excellent lithium ion conductor, which can protect the cathode surface and improve the rate performance. The doped W can alleviate the harmful H2↔H3 phase transition, thereby inhibiting the generation of microcracks, and improving the electrochemical performance. Consequently, the 0.3 wt% W-doped sample provides a significant improved capacity retention of 88.5 % compared with the pristine LNO (80.7 %) after 100 cycles at 2.8–4.3 V under 1C.