{"title":"空间应用高粒度三维量热仪中的粒子识别","authors":"Claudio Brugnoni , Matteo Duranti , Valerio Formato , Luca Tabarroni , Valerio Vagelli","doi":"10.1016/j.nima.2024.170063","DOIUrl":null,"url":null,"abstract":"<div><div>High granularity 3D calorimeters offer the potential to precisely reconstruct the 3D topology of electromagnetic and hadronic showers originating from isotropic sources. This distinctive capability creates the opportunity for applying reconstruction and analysis methods that could yield additional information compared to those based on the traditional layer-by-layer energy deposit analysis common in particle and astroparticle physics experiments utilizing calorimeters with layer segmentation. In this study, we present a strategy for analyzing the energy deposit in a crystal array calorimeter, utilizing the 3D parametrization of both longitudinal and transversal shapes of showers to implement likelihood tests on single events. While this analysis was developed using the High Energy cosmic Radiation Detector (HERD) calorimeter as a case study, its applicability may extend to any high granularity, homogeneous, isotropic calorimeter employed in particle physics experiments.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1070 ","pages":"Article 170063"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle identification in high-granularity 3D calorimeters for space-borne applications\",\"authors\":\"Claudio Brugnoni , Matteo Duranti , Valerio Formato , Luca Tabarroni , Valerio Vagelli\",\"doi\":\"10.1016/j.nima.2024.170063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High granularity 3D calorimeters offer the potential to precisely reconstruct the 3D topology of electromagnetic and hadronic showers originating from isotropic sources. This distinctive capability creates the opportunity for applying reconstruction and analysis methods that could yield additional information compared to those based on the traditional layer-by-layer energy deposit analysis common in particle and astroparticle physics experiments utilizing calorimeters with layer segmentation. In this study, we present a strategy for analyzing the energy deposit in a crystal array calorimeter, utilizing the 3D parametrization of both longitudinal and transversal shapes of showers to implement likelihood tests on single events. While this analysis was developed using the High Energy cosmic Radiation Detector (HERD) calorimeter as a case study, its applicability may extend to any high granularity, homogeneous, isotropic calorimeter employed in particle physics experiments.</div></div>\",\"PeriodicalId\":19359,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"volume\":\"1070 \",\"pages\":\"Article 170063\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168900224009896\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900224009896","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Particle identification in high-granularity 3D calorimeters for space-borne applications
High granularity 3D calorimeters offer the potential to precisely reconstruct the 3D topology of electromagnetic and hadronic showers originating from isotropic sources. This distinctive capability creates the opportunity for applying reconstruction and analysis methods that could yield additional information compared to those based on the traditional layer-by-layer energy deposit analysis common in particle and astroparticle physics experiments utilizing calorimeters with layer segmentation. In this study, we present a strategy for analyzing the energy deposit in a crystal array calorimeter, utilizing the 3D parametrization of both longitudinal and transversal shapes of showers to implement likelihood tests on single events. While this analysis was developed using the High Energy cosmic Radiation Detector (HERD) calorimeter as a case study, its applicability may extend to any high granularity, homogeneous, isotropic calorimeter employed in particle physics experiments.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.