Xinfa Qiang , Maoheng Dong , Xiangyu Chen , Zi Yang , Hengxiang Zhai , Chao Wu , Song Tian
{"title":"碳/碳复合材料上的 CVD 生长碳化硅纳米线增强碳化硅涂层:关注抗氧化性、抗热震性和抗高温气体侵蚀性","authors":"Xinfa Qiang , Maoheng Dong , Xiangyu Chen , Zi Yang , Hengxiang Zhai , Chao Wu , Song Tian","doi":"10.1016/j.surfcoat.2024.131584","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the oxidation resistance of C/C composites, a SiCNWs-reinforced SiC (SiCNWs-SiC) coating was successfully fabricated in-situ by a simple chemical vapor deposition (CVD) process on C/C composites. Microstructural analysis revealed uniform β-SiCNWs with diameters of 50–200 nm and lengths up to tens of micrometers. The thickness of porous SiCNWs layer is approximately 300 μm. Elevated deposition temperatures deteriorated coating density, with optimal performance at 1373 K. The SiCNWs enhanced deposition efficiency, boosting bending strength from 107.2 MPa to 134.3 MPa and adhesion strength from 6.74 MPa to 14.18 MPa. Oxidation resistance tests at various temperatures confirmed superior performance of SiCNWs-toughened SiC coatings. Thermal shock tests showed minimal weight loss (2.5 %) after 30 cycles, outperforming pure SiC coatings (6.2 %). The 1873 K gas erosion test showed that the weight loss of the SiCNWs-SiC coated C/C samples was only 5.2 % for 53 h, while the pure CVD-SiC coated C/C composite samples broke after 19 h of gas erosion, and the weight loss of pure C/C composite samples reached as high as 38.5 % after 1.3 h of gas erosion.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"495 ","pages":"Article 131584"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CVD-grown SiC nanowires-reinforced SiC coating on C/C composites: Focusing on antioxidation, thermal shock and high-temperature gas erosion resistance\",\"authors\":\"Xinfa Qiang , Maoheng Dong , Xiangyu Chen , Zi Yang , Hengxiang Zhai , Chao Wu , Song Tian\",\"doi\":\"10.1016/j.surfcoat.2024.131584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To improve the oxidation resistance of C/C composites, a SiCNWs-reinforced SiC (SiCNWs-SiC) coating was successfully fabricated in-situ by a simple chemical vapor deposition (CVD) process on C/C composites. Microstructural analysis revealed uniform β-SiCNWs with diameters of 50–200 nm and lengths up to tens of micrometers. The thickness of porous SiCNWs layer is approximately 300 μm. Elevated deposition temperatures deteriorated coating density, with optimal performance at 1373 K. The SiCNWs enhanced deposition efficiency, boosting bending strength from 107.2 MPa to 134.3 MPa and adhesion strength from 6.74 MPa to 14.18 MPa. Oxidation resistance tests at various temperatures confirmed superior performance of SiCNWs-toughened SiC coatings. Thermal shock tests showed minimal weight loss (2.5 %) after 30 cycles, outperforming pure SiC coatings (6.2 %). The 1873 K gas erosion test showed that the weight loss of the SiCNWs-SiC coated C/C samples was only 5.2 % for 53 h, while the pure CVD-SiC coated C/C composite samples broke after 19 h of gas erosion, and the weight loss of pure C/C composite samples reached as high as 38.5 % after 1.3 h of gas erosion.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"495 \",\"pages\":\"Article 131584\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224012155\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224012155","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
CVD-grown SiC nanowires-reinforced SiC coating on C/C composites: Focusing on antioxidation, thermal shock and high-temperature gas erosion resistance
To improve the oxidation resistance of C/C composites, a SiCNWs-reinforced SiC (SiCNWs-SiC) coating was successfully fabricated in-situ by a simple chemical vapor deposition (CVD) process on C/C composites. Microstructural analysis revealed uniform β-SiCNWs with diameters of 50–200 nm and lengths up to tens of micrometers. The thickness of porous SiCNWs layer is approximately 300 μm. Elevated deposition temperatures deteriorated coating density, with optimal performance at 1373 K. The SiCNWs enhanced deposition efficiency, boosting bending strength from 107.2 MPa to 134.3 MPa and adhesion strength from 6.74 MPa to 14.18 MPa. Oxidation resistance tests at various temperatures confirmed superior performance of SiCNWs-toughened SiC coatings. Thermal shock tests showed minimal weight loss (2.5 %) after 30 cycles, outperforming pure SiC coatings (6.2 %). The 1873 K gas erosion test showed that the weight loss of the SiCNWs-SiC coated C/C samples was only 5.2 % for 53 h, while the pure CVD-SiC coated C/C composite samples broke after 19 h of gas erosion, and the weight loss of pure C/C composite samples reached as high as 38.5 % after 1.3 h of gas erosion.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.