碳/碳复合材料上的 CVD 生长碳化硅纳米线增强碳化硅涂层:关注抗氧化性、抗热震性和抗高温气体侵蚀性

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Surface & Coatings Technology Pub Date : 2024-11-20 DOI:10.1016/j.surfcoat.2024.131584
Xinfa Qiang , Maoheng Dong , Xiangyu Chen , Zi Yang , Hengxiang Zhai , Chao Wu , Song Tian
{"title":"碳/碳复合材料上的 CVD 生长碳化硅纳米线增强碳化硅涂层:关注抗氧化性、抗热震性和抗高温气体侵蚀性","authors":"Xinfa Qiang ,&nbsp;Maoheng Dong ,&nbsp;Xiangyu Chen ,&nbsp;Zi Yang ,&nbsp;Hengxiang Zhai ,&nbsp;Chao Wu ,&nbsp;Song Tian","doi":"10.1016/j.surfcoat.2024.131584","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the oxidation resistance of C/C composites, a SiCNWs-reinforced SiC (SiCNWs-SiC) coating was successfully fabricated in-situ by a simple chemical vapor deposition (CVD) process on C/C composites. Microstructural analysis revealed uniform β-SiCNWs with diameters of 50–200 nm and lengths up to tens of micrometers. The thickness of porous SiCNWs layer is approximately 300 μm. Elevated deposition temperatures deteriorated coating density, with optimal performance at 1373 K. The SiCNWs enhanced deposition efficiency, boosting bending strength from 107.2 MPa to 134.3 MPa and adhesion strength from 6.74 MPa to 14.18 MPa. Oxidation resistance tests at various temperatures confirmed superior performance of SiCNWs-toughened SiC coatings. Thermal shock tests showed minimal weight loss (2.5 %) after 30 cycles, outperforming pure SiC coatings (6.2 %). The 1873 K gas erosion test showed that the weight loss of the SiCNWs-SiC coated C/C samples was only 5.2 % for 53 h, while the pure CVD-SiC coated C/C composite samples broke after 19 h of gas erosion, and the weight loss of pure C/C composite samples reached as high as 38.5 % after 1.3 h of gas erosion.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"495 ","pages":"Article 131584"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CVD-grown SiC nanowires-reinforced SiC coating on C/C composites: Focusing on antioxidation, thermal shock and high-temperature gas erosion resistance\",\"authors\":\"Xinfa Qiang ,&nbsp;Maoheng Dong ,&nbsp;Xiangyu Chen ,&nbsp;Zi Yang ,&nbsp;Hengxiang Zhai ,&nbsp;Chao Wu ,&nbsp;Song Tian\",\"doi\":\"10.1016/j.surfcoat.2024.131584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To improve the oxidation resistance of C/C composites, a SiCNWs-reinforced SiC (SiCNWs-SiC) coating was successfully fabricated in-situ by a simple chemical vapor deposition (CVD) process on C/C composites. Microstructural analysis revealed uniform β-SiCNWs with diameters of 50–200 nm and lengths up to tens of micrometers. The thickness of porous SiCNWs layer is approximately 300 μm. Elevated deposition temperatures deteriorated coating density, with optimal performance at 1373 K. The SiCNWs enhanced deposition efficiency, boosting bending strength from 107.2 MPa to 134.3 MPa and adhesion strength from 6.74 MPa to 14.18 MPa. Oxidation resistance tests at various temperatures confirmed superior performance of SiCNWs-toughened SiC coatings. Thermal shock tests showed minimal weight loss (2.5 %) after 30 cycles, outperforming pure SiC coatings (6.2 %). The 1873 K gas erosion test showed that the weight loss of the SiCNWs-SiC coated C/C samples was only 5.2 % for 53 h, while the pure CVD-SiC coated C/C composite samples broke after 19 h of gas erosion, and the weight loss of pure C/C composite samples reached as high as 38.5 % after 1.3 h of gas erosion.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"495 \",\"pages\":\"Article 131584\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224012155\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224012155","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

为了提高碳/碳复合材料的抗氧化性,通过简单的化学气相沉积(CVD)工艺在碳/碳复合材料上成功地原位制备出了 SiCNWs 增强碳化硅(SiCNWs-SiC)涂层。微观结构分析表明,β-SiCNWs 的直径在 50-200 纳米之间,长度可达数十微米。多孔 SiCNWs 层的厚度约为 300 微米。SiCNWs 提高了沉积效率,使弯曲强度从 107.2 兆帕提高到 134.3 兆帕,附着强度从 6.74 兆帕提高到 14.18 兆帕。在不同温度下进行的抗氧化测试表明,SiCNWs 增韧的碳化硅涂层性能优越。热冲击测试表明,经过 30 次循环后,涂层的重量损失极小(2.5%),优于纯碳化硅涂层(6.2%)。1873 K 气体侵蚀测试表明,SiCNWs-SiC 涂层 C/C 样品在 53 小时内的失重率仅为 5.2%,而纯 CVD-SiC 涂层 C/C 复合材料样品在 19 小时气体侵蚀后就会破裂,纯 C/C 复合材料样品在 1.3 小时气体侵蚀后的失重率高达 38.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CVD-grown SiC nanowires-reinforced SiC coating on C/C composites: Focusing on antioxidation, thermal shock and high-temperature gas erosion resistance
To improve the oxidation resistance of C/C composites, a SiCNWs-reinforced SiC (SiCNWs-SiC) coating was successfully fabricated in-situ by a simple chemical vapor deposition (CVD) process on C/C composites. Microstructural analysis revealed uniform β-SiCNWs with diameters of 50–200 nm and lengths up to tens of micrometers. The thickness of porous SiCNWs layer is approximately 300 μm. Elevated deposition temperatures deteriorated coating density, with optimal performance at 1373 K. The SiCNWs enhanced deposition efficiency, boosting bending strength from 107.2 MPa to 134.3 MPa and adhesion strength from 6.74 MPa to 14.18 MPa. Oxidation resistance tests at various temperatures confirmed superior performance of SiCNWs-toughened SiC coatings. Thermal shock tests showed minimal weight loss (2.5 %) after 30 cycles, outperforming pure SiC coatings (6.2 %). The 1873 K gas erosion test showed that the weight loss of the SiCNWs-SiC coated C/C samples was only 5.2 % for 53 h, while the pure CVD-SiC coated C/C composite samples broke after 19 h of gas erosion, and the weight loss of pure C/C composite samples reached as high as 38.5 % after 1.3 h of gas erosion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
期刊最新文献
Tensile ductility of a duplex surface treated maraging steel produced by Laser Powder Bed Fusion: Interaction between the inhomogeneous microstructure and transformation induced plasticity Investigation on surface properties of AZ31 magnesium alloy modified by micro-arc oxidation and cathodic deposition techniques High temperature properties of nichrome resistant heaters – A systematic comparison of APS, suspension and filament HVOF sprayed coatings Pore formation and pore inter-connectivity in plasma electrolytic oxidation coatings on aluminium alloy Enhancing wear resistance and biocompatibility of medical ZrNb alloy used for artificial joint via femtosecond laser surface processing combined with thermal oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1