Ihsan Efeoglu, Yasar Totik, Gokhan Gulten, Banu Yaylali, Mustafa Yesilyurt
{"title":"掺杂 W 的氢化类金刚石碳 (a-C:H) 涂层的附着力和摩擦磨损特性分析","authors":"Ihsan Efeoglu, Yasar Totik, Gokhan Gulten, Banu Yaylali, Mustafa Yesilyurt","doi":"10.1016/j.surfcoat.2024.131578","DOIUrl":null,"url":null,"abstract":"<div><div>The aerospace, automotive, and defense industries extensively use AISI 4130 alloy steel, a significant material type for most engineering applications in the industry, due to its crucial characteristics, such as high strength, durability, machinability, and corrosion resistance. In this study, enhancing the surface mechanical and tribological properties of the material with tungsten (W)-doped diamond-like carbon (DLC) coatings emerges as a prominent approach to improving performance. Amorphous hydrogenated diamond-like carbon (a-C:H) coating has outstanding mechanical and tribological properties. In this study, W-doped a-C:H-DLC coatings have been deposited on AISI 4130 using closed-field unbalanced magnetron sputtering. A L9 orthogonal array of the Taguchi method was utilized to optimize the variable coating parameters applied in the magnetron sputtering process. The microstructure and thickness of the W-doped a-C:H-DLC coatings were examined using scanning electron microscopy. Raman spectroscopy was used to characterize the structure of these DLC coatings. The hardness values of the coatings were determined using the Knoop microhardness test. The scratch test method was used to examine the adhesion properties of the coatings by determining their critical load values at which coating delamination occurred. The tribological behavior of uncoated AISI 4130 substrate and coating was determined with a pin-on-disc tribometer against an Al<sub>2</sub>O<sub>3</sub> ball under dry sliding conditions. Delamination and gradual failures occurring in the wear test of the uncoated specimen increased the friction coefficient. On the contrary, the coating exhibits such superior tribological properties that the friction coefficient decreased due to the prevention of delamination and gradual failures to a certain extent. It was observed that the scratch-adhesion properties of the coated specimens significantly contributed to the improvement of tribological performance. These thin films are particularly valued for their ability to provide high wear resistance and low coefficients of friction, properties that are critical to industries that deal with harsh conditions, such as automotive and aerospace.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"495 ","pages":"Article 131578"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adhesion and friction-wear characterization of W-doped hydrogenated diamond-like carbon (a-C:H) coatings\",\"authors\":\"Ihsan Efeoglu, Yasar Totik, Gokhan Gulten, Banu Yaylali, Mustafa Yesilyurt\",\"doi\":\"10.1016/j.surfcoat.2024.131578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aerospace, automotive, and defense industries extensively use AISI 4130 alloy steel, a significant material type for most engineering applications in the industry, due to its crucial characteristics, such as high strength, durability, machinability, and corrosion resistance. In this study, enhancing the surface mechanical and tribological properties of the material with tungsten (W)-doped diamond-like carbon (DLC) coatings emerges as a prominent approach to improving performance. Amorphous hydrogenated diamond-like carbon (a-C:H) coating has outstanding mechanical and tribological properties. In this study, W-doped a-C:H-DLC coatings have been deposited on AISI 4130 using closed-field unbalanced magnetron sputtering. A L9 orthogonal array of the Taguchi method was utilized to optimize the variable coating parameters applied in the magnetron sputtering process. The microstructure and thickness of the W-doped a-C:H-DLC coatings were examined using scanning electron microscopy. Raman spectroscopy was used to characterize the structure of these DLC coatings. The hardness values of the coatings were determined using the Knoop microhardness test. The scratch test method was used to examine the adhesion properties of the coatings by determining their critical load values at which coating delamination occurred. The tribological behavior of uncoated AISI 4130 substrate and coating was determined with a pin-on-disc tribometer against an Al<sub>2</sub>O<sub>3</sub> ball under dry sliding conditions. Delamination and gradual failures occurring in the wear test of the uncoated specimen increased the friction coefficient. On the contrary, the coating exhibits such superior tribological properties that the friction coefficient decreased due to the prevention of delamination and gradual failures to a certain extent. It was observed that the scratch-adhesion properties of the coated specimens significantly contributed to the improvement of tribological performance. These thin films are particularly valued for their ability to provide high wear resistance and low coefficients of friction, properties that are critical to industries that deal with harsh conditions, such as automotive and aerospace.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"495 \",\"pages\":\"Article 131578\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S025789722401209X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025789722401209X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Adhesion and friction-wear characterization of W-doped hydrogenated diamond-like carbon (a-C:H) coatings
The aerospace, automotive, and defense industries extensively use AISI 4130 alloy steel, a significant material type for most engineering applications in the industry, due to its crucial characteristics, such as high strength, durability, machinability, and corrosion resistance. In this study, enhancing the surface mechanical and tribological properties of the material with tungsten (W)-doped diamond-like carbon (DLC) coatings emerges as a prominent approach to improving performance. Amorphous hydrogenated diamond-like carbon (a-C:H) coating has outstanding mechanical and tribological properties. In this study, W-doped a-C:H-DLC coatings have been deposited on AISI 4130 using closed-field unbalanced magnetron sputtering. A L9 orthogonal array of the Taguchi method was utilized to optimize the variable coating parameters applied in the magnetron sputtering process. The microstructure and thickness of the W-doped a-C:H-DLC coatings were examined using scanning electron microscopy. Raman spectroscopy was used to characterize the structure of these DLC coatings. The hardness values of the coatings were determined using the Knoop microhardness test. The scratch test method was used to examine the adhesion properties of the coatings by determining their critical load values at which coating delamination occurred. The tribological behavior of uncoated AISI 4130 substrate and coating was determined with a pin-on-disc tribometer against an Al2O3 ball under dry sliding conditions. Delamination and gradual failures occurring in the wear test of the uncoated specimen increased the friction coefficient. On the contrary, the coating exhibits such superior tribological properties that the friction coefficient decreased due to the prevention of delamination and gradual failures to a certain extent. It was observed that the scratch-adhesion properties of the coated specimens significantly contributed to the improvement of tribological performance. These thin films are particularly valued for their ability to provide high wear resistance and low coefficients of friction, properties that are critical to industries that deal with harsh conditions, such as automotive and aerospace.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.