Kejia Zhuang , Ying Li , Jian Weng , Zhizheng Wu , Shuqiang Li , Zhonghua Li , Li Ma
{"title":"使用新型弹性磨料喷射加工方法对钛合金进行表面改性","authors":"Kejia Zhuang , Ying Li , Jian Weng , Zhizheng Wu , Shuqiang Li , Zhonghua Li , Li Ma","doi":"10.1016/j.surfcoat.2024.131573","DOIUrl":null,"url":null,"abstract":"<div><div>Surface modification is always employed to enhance surface integrity, where abrasive jet machining (AJM) represents a large portion. This paper investigates the impact of a new elastic abrasive jet machining (EAJM) method on the surface characteristics of Ti6Al4V alloy. A self-developed multi-element polymer microbead covered by diamond powders is employed as the abrasive with a hardness of approximately 50–80 HV. This study systematically examines and compares the performance of elastic and hard abrasives in surface modification of Ti6Al4V by AJM, investigating the effects of nozzle pressure (<em>P</em>) and traverse speed (<em>v</em>) on surface integrity. The lowest surface roughness and highest microhardness are achieved by EAJM under the condition of <em>P</em> = 350 kPa and <em>v</em> = 0.75 mm/s. Hard abrasive jet machining (HAJM) tends to produce poor surface quality when excessive parameters are applied, while the performance of EAJM is relatively stable. The most compressive residual stresses obtained by EAJM and HAJM are −300 and −140 MPa, respectively. EAJM is able to modify the surface characteristics and produce a better surface quality with a lower material removal amount compared to HAJM. In addition, the relatively lower crushing rate of the elastic matrix and the fact that the material removal capability of EAJM relies on the diamond powders on the abrasive surface make it easier for EAJM to maintain its performance.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"495 ","pages":"Article 131573"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface modification of titanium alloy using a novel elastic abrasive jet machining method\",\"authors\":\"Kejia Zhuang , Ying Li , Jian Weng , Zhizheng Wu , Shuqiang Li , Zhonghua Li , Li Ma\",\"doi\":\"10.1016/j.surfcoat.2024.131573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surface modification is always employed to enhance surface integrity, where abrasive jet machining (AJM) represents a large portion. This paper investigates the impact of a new elastic abrasive jet machining (EAJM) method on the surface characteristics of Ti6Al4V alloy. A self-developed multi-element polymer microbead covered by diamond powders is employed as the abrasive with a hardness of approximately 50–80 HV. This study systematically examines and compares the performance of elastic and hard abrasives in surface modification of Ti6Al4V by AJM, investigating the effects of nozzle pressure (<em>P</em>) and traverse speed (<em>v</em>) on surface integrity. The lowest surface roughness and highest microhardness are achieved by EAJM under the condition of <em>P</em> = 350 kPa and <em>v</em> = 0.75 mm/s. Hard abrasive jet machining (HAJM) tends to produce poor surface quality when excessive parameters are applied, while the performance of EAJM is relatively stable. The most compressive residual stresses obtained by EAJM and HAJM are −300 and −140 MPa, respectively. EAJM is able to modify the surface characteristics and produce a better surface quality with a lower material removal amount compared to HAJM. In addition, the relatively lower crushing rate of the elastic matrix and the fact that the material removal capability of EAJM relies on the diamond powders on the abrasive surface make it easier for EAJM to maintain its performance.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"495 \",\"pages\":\"Article 131573\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224012040\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224012040","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Surface modification of titanium alloy using a novel elastic abrasive jet machining method
Surface modification is always employed to enhance surface integrity, where abrasive jet machining (AJM) represents a large portion. This paper investigates the impact of a new elastic abrasive jet machining (EAJM) method on the surface characteristics of Ti6Al4V alloy. A self-developed multi-element polymer microbead covered by diamond powders is employed as the abrasive with a hardness of approximately 50–80 HV. This study systematically examines and compares the performance of elastic and hard abrasives in surface modification of Ti6Al4V by AJM, investigating the effects of nozzle pressure (P) and traverse speed (v) on surface integrity. The lowest surface roughness and highest microhardness are achieved by EAJM under the condition of P = 350 kPa and v = 0.75 mm/s. Hard abrasive jet machining (HAJM) tends to produce poor surface quality when excessive parameters are applied, while the performance of EAJM is relatively stable. The most compressive residual stresses obtained by EAJM and HAJM are −300 and −140 MPa, respectively. EAJM is able to modify the surface characteristics and produce a better surface quality with a lower material removal amount compared to HAJM. In addition, the relatively lower crushing rate of the elastic matrix and the fact that the material removal capability of EAJM relies on the diamond powders on the abrasive surface make it easier for EAJM to maintain its performance.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.