Alireza Ghazavi Khorasgani , Foroogh S. Tabataba , Mohammad Sadegh Fazel , Mehdi Naderi Soorki
{"title":"多用户多红外系统毫米波 6G 网络中的动态节能资源分配","authors":"Alireza Ghazavi Khorasgani , Foroogh S. Tabataba , Mohammad Sadegh Fazel , Mehdi Naderi Soorki","doi":"10.1016/j.phycom.2024.102547","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel approach for energy-efficient resource allocation in millimeter-wave networks, assisted by multiple intelligent reflecting surfaces (IRS). The proposed framework optimizes the dynamic ON/OFF control and phase shifts of IRS elements, along with beamforming (BF) at access points (AP), under practical constraints. Unlike existing methods, our model enhances energy efficiency (EE) by optimizing a fixed number of ON IRS elements. We present innovative algorithms, including a modified nested fractional programming (NFP) for BF and a simulated annealing (SA)-type algorithm for phase shift and element selection. Our results demonstrate a 6.5-fold improvement in EE under a realistic scenario compared to benchmark, highlighting the effectiveness of our approach as a crucial strategy for future 6G networks.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"68 ","pages":"Article 102547"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic energy efficient resource allocation in multi-user multi-IRS mmWave 6G networks\",\"authors\":\"Alireza Ghazavi Khorasgani , Foroogh S. Tabataba , Mohammad Sadegh Fazel , Mehdi Naderi Soorki\",\"doi\":\"10.1016/j.phycom.2024.102547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a novel approach for energy-efficient resource allocation in millimeter-wave networks, assisted by multiple intelligent reflecting surfaces (IRS). The proposed framework optimizes the dynamic ON/OFF control and phase shifts of IRS elements, along with beamforming (BF) at access points (AP), under practical constraints. Unlike existing methods, our model enhances energy efficiency (EE) by optimizing a fixed number of ON IRS elements. We present innovative algorithms, including a modified nested fractional programming (NFP) for BF and a simulated annealing (SA)-type algorithm for phase shift and element selection. Our results demonstrate a 6.5-fold improvement in EE under a realistic scenario compared to benchmark, highlighting the effectiveness of our approach as a crucial strategy for future 6G networks.</div></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"68 \",\"pages\":\"Article 102547\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490724002659\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002659","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic energy efficient resource allocation in multi-user multi-IRS mmWave 6G networks
This study introduces a novel approach for energy-efficient resource allocation in millimeter-wave networks, assisted by multiple intelligent reflecting surfaces (IRS). The proposed framework optimizes the dynamic ON/OFF control and phase shifts of IRS elements, along with beamforming (BF) at access points (AP), under practical constraints. Unlike existing methods, our model enhances energy efficiency (EE) by optimizing a fixed number of ON IRS elements. We present innovative algorithms, including a modified nested fractional programming (NFP) for BF and a simulated annealing (SA)-type algorithm for phase shift and element selection. Our results demonstrate a 6.5-fold improvement in EE under a realistic scenario compared to benchmark, highlighting the effectiveness of our approach as a crucial strategy for future 6G networks.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.