快速配体转化产生的高密度 Ir 单点,用于高效水电解

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2024-11-01 DOI:10.1016/S1872-2067(24)60128-2
Zhaoping Shi , Ziang Wang , Hongxiang Wu , Meiling Xiao , Changpeng Liu , Wei Xing
{"title":"快速配体转化产生的高密度 Ir 单点,用于高效水电解","authors":"Zhaoping Shi ,&nbsp;Ziang Wang ,&nbsp;Hongxiang Wu ,&nbsp;Meiling Xiao ,&nbsp;Changpeng Liu ,&nbsp;Wei Xing","doi":"10.1016/S1872-2067(24)60128-2","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance oxygen evolution reaction catalysts with low iridium content is the key to the scale-up of proton exchange membrane water electrolyzer (PEMWE) for green hydrogen production. Single-site electrocatalysts with maximized atomic efficiency are held as promising candidates but still suffer from inadequate activity and stability in practical electrolyzer due to the low site density. Here, we proposed a NaNO<sub>3</sub>-assistant thermal decomposition strategy for the preparation of high-density Ir single sites on MnO<sub>2</sub> substrate (NaNO<sub>3</sub>-H-Ir-MnO<sub>2</sub>). Direct spectroscopic evidence suggests the inclusion of NaNO<sub>3</sub> accelerates the transformation of Ir-Cl to Ir-O coordination, thus generating uniform dispersed high-density Ir single sites in the products. The optimized H-Ir-MnO<sub>2</sub> demonstrates not only high intrinsic activity in a three-electrode set-up but also boosted performance in scalable PEMWE, requiring a cell voltage of only 1.74 V to attain a high current density of 2 A cm<sup>‒2</sup> at a low Ir loading of 0.18 mg<sub>Ir</sub> cm<sup>‒2</sup>. This work offers a new insight for enhancing the industrial practicality of Ir-based single site catalysts.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 223-232"},"PeriodicalIF":15.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-density Ir single sites from rapid ligand transformation for efficient water electrolysis\",\"authors\":\"Zhaoping Shi ,&nbsp;Ziang Wang ,&nbsp;Hongxiang Wu ,&nbsp;Meiling Xiao ,&nbsp;Changpeng Liu ,&nbsp;Wei Xing\",\"doi\":\"10.1016/S1872-2067(24)60128-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of high-performance oxygen evolution reaction catalysts with low iridium content is the key to the scale-up of proton exchange membrane water electrolyzer (PEMWE) for green hydrogen production. Single-site electrocatalysts with maximized atomic efficiency are held as promising candidates but still suffer from inadequate activity and stability in practical electrolyzer due to the low site density. Here, we proposed a NaNO<sub>3</sub>-assistant thermal decomposition strategy for the preparation of high-density Ir single sites on MnO<sub>2</sub> substrate (NaNO<sub>3</sub>-H-Ir-MnO<sub>2</sub>). Direct spectroscopic evidence suggests the inclusion of NaNO<sub>3</sub> accelerates the transformation of Ir-Cl to Ir-O coordination, thus generating uniform dispersed high-density Ir single sites in the products. The optimized H-Ir-MnO<sub>2</sub> demonstrates not only high intrinsic activity in a three-electrode set-up but also boosted performance in scalable PEMWE, requiring a cell voltage of only 1.74 V to attain a high current density of 2 A cm<sup>‒2</sup> at a low Ir loading of 0.18 mg<sub>Ir</sub> cm<sup>‒2</sup>. This work offers a new insight for enhancing the industrial practicality of Ir-based single site catalysts.</div></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"66 \",\"pages\":\"Pages 223-232\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724601282\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601282","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

开发铱含量低的高性能氧进化反应催化剂是扩大质子交换膜水电解槽(PEMWE)规模以实现绿色制氢的关键。原子效率最大化的单位点电催化剂被认为是有前途的候选催化剂,但由于位点密度低,在实际电解槽中仍存在活性和稳定性不足的问题。在此,我们提出了一种在 MnO2 基质上制备高密度 Ir 单位点(NaNO3-H-Ir-MnO2)的 NaNO3 辅助热分解策略。直接光谱证据表明,NaNO3 的加入加速了 Ir-Cl 配位向 Ir-O 配位的转变,从而在产物中生成了均匀分散的高密度 Ir 单位点。优化后的 H-Ir-MnO2 不仅在三电极设置中表现出很高的本征活性,而且在可扩展的 PEMWE 中的性能也得到了提升,在 0.18 mgIr cm-2 的低 Ir 负载条件下,只需 1.74 V 的电池电压就能达到 2 A cm-2 的高电流密度。这项工作为提高铱基单位点催化剂的工业实用性提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-density Ir single sites from rapid ligand transformation for efficient water electrolysis
The development of high-performance oxygen evolution reaction catalysts with low iridium content is the key to the scale-up of proton exchange membrane water electrolyzer (PEMWE) for green hydrogen production. Single-site electrocatalysts with maximized atomic efficiency are held as promising candidates but still suffer from inadequate activity and stability in practical electrolyzer due to the low site density. Here, we proposed a NaNO3-assistant thermal decomposition strategy for the preparation of high-density Ir single sites on MnO2 substrate (NaNO3-H-Ir-MnO2). Direct spectroscopic evidence suggests the inclusion of NaNO3 accelerates the transformation of Ir-Cl to Ir-O coordination, thus generating uniform dispersed high-density Ir single sites in the products. The optimized H-Ir-MnO2 demonstrates not only high intrinsic activity in a three-electrode set-up but also boosted performance in scalable PEMWE, requiring a cell voltage of only 1.74 V to attain a high current density of 2 A cm‒2 at a low Ir loading of 0.18 mgIr cm‒2. This work offers a new insight for enhancing the industrial practicality of Ir-based single site catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Structural regulation strategies of nitrogen reduction electrocatalysts Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction Enhanced electrochemical carbon dioxide reduction in membrane electrode assemblies with acidic electrolytes through a silicate buffer layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1