通过分布式稳健频率受限机组承诺加强以可再生能源为主的电力系统的频率安全

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Electric Power Systems Research Pub Date : 2024-11-21 DOI:10.1016/j.epsr.2024.111078
Danyang Xu, Zhigang Wu, Yanling Liu, Lin Zhu
{"title":"通过分布式稳健频率受限机组承诺加强以可再生能源为主的电力系统的频率安全","authors":"Danyang Xu,&nbsp;Zhigang Wu,&nbsp;Yanling Liu,&nbsp;Lin Zhu","doi":"10.1016/j.epsr.2024.111078","DOIUrl":null,"url":null,"abstract":"<div><div>The insufficient inertia and reserve in renewable energy source (RES)-dominated power systems significantly challenge frequency security. This paper introduces a distributionally robust frequency constrained unit commitment (DR-FCUC) scheme at the system operation level to tackle this issue, optimizing day-ahead unit commitment, generation dispatch, and demand-side reserve procurement. The proposed DR-FCUC accounts for frequency dynamic constraints under the most extensive power disturbance scenarios and employs a DR chance constrained (DRCC) approach using a Wasserstein-metric ambiguity set to manage RES uncertainty. Furthermore, we utilize alternate support vector machine decision trees (ASVMTREE) to convert the high-dimensional frequency nadir constraint into a set of linear constraints and introduce a two-stage sampling method to enhance the ASVMTREE training dataset. Consequently, the proposed DR-FCUC is formulated as a mixed-integer linear programming (MILP) model. Case studies on modified IEEE 39-bus and IEEE 118-bus test systems demonstrate the necessity of incorporating frequency constraints into dispatch schemes, the critical role of demand-side frequency support, the effectiveness of the proposed DR-FCUC scheme, and the accuracy of the constraint convexification method.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"239 ","pages":"Article 111078"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing frequency security for renewable-dominated power systems via distributionally robust frequency constrained unit commitment\",\"authors\":\"Danyang Xu,&nbsp;Zhigang Wu,&nbsp;Yanling Liu,&nbsp;Lin Zhu\",\"doi\":\"10.1016/j.epsr.2024.111078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The insufficient inertia and reserve in renewable energy source (RES)-dominated power systems significantly challenge frequency security. This paper introduces a distributionally robust frequency constrained unit commitment (DR-FCUC) scheme at the system operation level to tackle this issue, optimizing day-ahead unit commitment, generation dispatch, and demand-side reserve procurement. The proposed DR-FCUC accounts for frequency dynamic constraints under the most extensive power disturbance scenarios and employs a DR chance constrained (DRCC) approach using a Wasserstein-metric ambiguity set to manage RES uncertainty. Furthermore, we utilize alternate support vector machine decision trees (ASVMTREE) to convert the high-dimensional frequency nadir constraint into a set of linear constraints and introduce a two-stage sampling method to enhance the ASVMTREE training dataset. Consequently, the proposed DR-FCUC is formulated as a mixed-integer linear programming (MILP) model. Case studies on modified IEEE 39-bus and IEEE 118-bus test systems demonstrate the necessity of incorporating frequency constraints into dispatch schemes, the critical role of demand-side frequency support, the effectiveness of the proposed DR-FCUC scheme, and the accuracy of the constraint convexification method.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"239 \",\"pages\":\"Article 111078\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779624009635\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624009635","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

以可再生能源(RES)为主的电力系统的惯性和储备不足对频率安全构成了巨大挑战。本文在系统运行层面引入了分布式稳健频率约束机组承诺(DR-FCUC)方案来解决这一问题,优化了日前机组承诺、发电调度和需求侧储备采购。拟议的 DR-FCUC 考虑了最广泛的电力扰动情况下的频率动态约束,并采用了一种 DR 机会约束 (DRCC) 方法,使用 Wasserstein 计量模糊集来管理 RES 的不确定性。此外,我们利用交替支持向量机决策树(ASVMTREE)将高维频率低点约束转换为线性约束集,并引入两阶段采样方法来增强 ASVMTREE 训练数据集。因此,所提出的 DR-FCUC 被表述为混合整数线性规划(MILP)模型。通过对修改后的 IEEE 39 总线和 IEEE 118 总线测试系统进行案例研究,证明了将频率约束纳入调度方案的必要性、需求方频率支持的关键作用、建议的 DR-FCUC 方案的有效性以及约束凸化方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing frequency security for renewable-dominated power systems via distributionally robust frequency constrained unit commitment
The insufficient inertia and reserve in renewable energy source (RES)-dominated power systems significantly challenge frequency security. This paper introduces a distributionally robust frequency constrained unit commitment (DR-FCUC) scheme at the system operation level to tackle this issue, optimizing day-ahead unit commitment, generation dispatch, and demand-side reserve procurement. The proposed DR-FCUC accounts for frequency dynamic constraints under the most extensive power disturbance scenarios and employs a DR chance constrained (DRCC) approach using a Wasserstein-metric ambiguity set to manage RES uncertainty. Furthermore, we utilize alternate support vector machine decision trees (ASVMTREE) to convert the high-dimensional frequency nadir constraint into a set of linear constraints and introduce a two-stage sampling method to enhance the ASVMTREE training dataset. Consequently, the proposed DR-FCUC is formulated as a mixed-integer linear programming (MILP) model. Case studies on modified IEEE 39-bus and IEEE 118-bus test systems demonstrate the necessity of incorporating frequency constraints into dispatch schemes, the critical role of demand-side frequency support, the effectiveness of the proposed DR-FCUC scheme, and the accuracy of the constraint convexification method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electric Power Systems Research
Electric Power Systems Research 工程技术-工程:电子与电气
CiteScore
7.50
自引率
17.90%
发文量
963
审稿时长
3.8 months
期刊介绍: Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview. • Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation. • Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design. • Substation work: equipment design, protection and control systems. • Distribution techniques, equipment development, and smart grids. • The utilization area from energy efficiency to distributed load levelling techniques. • Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.
期刊最新文献
Electromechanical analysis of underbuilt wire use in transmission lines Optimal power flow solution via noise-resilient quantum interior-point methods Protection without current transformers for electrical installations with three-phase bus ducts Joint trading of energy and reserve considering microgrid agent fraudulent behaviors Aggregated vulnerability assessment of power transmission lines under operational and hurricane induced outages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1