评估将 FeN2 用作电催化剂以提高锂-S 电池性能的第一性原理研究

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-11-19 DOI:10.1016/j.chphi.2024.100785
Liyuan Jiang, Bingqian Wang, Yulin Zhou, Yan Jiang, Zongyao Zhang, Zhengdao Li, Xinxin Zhao, Jianbao Wu
{"title":"评估将 FeN2 用作电催化剂以提高锂-S 电池性能的第一性原理研究","authors":"Liyuan Jiang,&nbsp;Bingqian Wang,&nbsp;Yulin Zhou,&nbsp;Yan Jiang,&nbsp;Zongyao Zhang,&nbsp;Zhengdao Li,&nbsp;Xinxin Zhao,&nbsp;Jianbao Wu","doi":"10.1016/j.chphi.2024.100785","DOIUrl":null,"url":null,"abstract":"<div><div>The high energy density, low cost, and environmental sustainability of lithium-sulfur (Li–S) batteries render them highly promising as next-generation energy storage devices. Nevertheless, the commercial advancement of Li–S batteries faces obstacles, including the limited conductivity of sulfur, the shuttle effect of lithium polysulfides (LiPSs), and the suboptimal efficiency of the discharging/charging process. Based on the theoretical calculation of density functional, the potential application of an FeN<sub>2</sub> single-layer as a catalyst in Li–S batteries to overcome the abovementioned problems is studied. The results show that the FeN<sub>2</sub> single-layer molecules have a metal electron structure and soluble LiPSs can effectively coordinate and bond with FeN<sub>2</sub>. Improving the overall conductivity and anchoring effect of sulfur can effectively inhibit the shuttle effect caused by LiPSs. It is worth noting that the FeN<sub>2</sub> single-molecule membrane has dual functions, and it has electrocatalytic activity on both the sulfur reduction reaction and the Li<sub>2</sub>S decomposition reaction, thus improving the conversion efficiency of the discharging and charging processes. These findings may provide a reference for the development of high-performance Li–S batteries.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100785"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles investigations to evaluate FeN2 as an electrocatalyst to improve the performance of Li–S batteries\",\"authors\":\"Liyuan Jiang,&nbsp;Bingqian Wang,&nbsp;Yulin Zhou,&nbsp;Yan Jiang,&nbsp;Zongyao Zhang,&nbsp;Zhengdao Li,&nbsp;Xinxin Zhao,&nbsp;Jianbao Wu\",\"doi\":\"10.1016/j.chphi.2024.100785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The high energy density, low cost, and environmental sustainability of lithium-sulfur (Li–S) batteries render them highly promising as next-generation energy storage devices. Nevertheless, the commercial advancement of Li–S batteries faces obstacles, including the limited conductivity of sulfur, the shuttle effect of lithium polysulfides (LiPSs), and the suboptimal efficiency of the discharging/charging process. Based on the theoretical calculation of density functional, the potential application of an FeN<sub>2</sub> single-layer as a catalyst in Li–S batteries to overcome the abovementioned problems is studied. The results show that the FeN<sub>2</sub> single-layer molecules have a metal electron structure and soluble LiPSs can effectively coordinate and bond with FeN<sub>2</sub>. Improving the overall conductivity and anchoring effect of sulfur can effectively inhibit the shuttle effect caused by LiPSs. It is worth noting that the FeN<sub>2</sub> single-molecule membrane has dual functions, and it has electrocatalytic activity on both the sulfur reduction reaction and the Li<sub>2</sub>S decomposition reaction, thus improving the conversion efficiency of the discharging and charging processes. These findings may provide a reference for the development of high-performance Li–S batteries.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"10 \",\"pages\":\"Article 100785\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022424003293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424003293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂硫(Li-S)电池具有高能量密度、低成本和环境可持续性等特点,因此很有希望成为下一代储能设备。然而,锂硫电池的商业化发展也面临着一些障碍,包括硫的有限导电性、锂多硫化物(LiPSs)的穿梭效应以及放电/充电过程的次优效率。基于密度泛函理论计算,研究了 FeN2 单层作为催化剂在锂-S 电池中的潜在应用,以克服上述问题。结果表明,FeN2 单层分子具有金属电子结构,可溶性锂离子电池能有效地与 FeN2 配位和结合。提高硫的整体导电性和锚定效果可以有效抑制 LiPSs 引起的穿梭效应。值得注意的是,FeN2 单分子膜具有双重功能,对硫还原反应和 Li2S 分解反应均具有电催化活性,从而提高了放电和充电过程的转化效率。这些发现可为开发高性能锂-S 电池提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First-principles investigations to evaluate FeN2 as an electrocatalyst to improve the performance of Li–S batteries
The high energy density, low cost, and environmental sustainability of lithium-sulfur (Li–S) batteries render them highly promising as next-generation energy storage devices. Nevertheless, the commercial advancement of Li–S batteries faces obstacles, including the limited conductivity of sulfur, the shuttle effect of lithium polysulfides (LiPSs), and the suboptimal efficiency of the discharging/charging process. Based on the theoretical calculation of density functional, the potential application of an FeN2 single-layer as a catalyst in Li–S batteries to overcome the abovementioned problems is studied. The results show that the FeN2 single-layer molecules have a metal electron structure and soluble LiPSs can effectively coordinate and bond with FeN2. Improving the overall conductivity and anchoring effect of sulfur can effectively inhibit the shuttle effect caused by LiPSs. It is worth noting that the FeN2 single-molecule membrane has dual functions, and it has electrocatalytic activity on both the sulfur reduction reaction and the Li2S decomposition reaction, thus improving the conversion efficiency of the discharging and charging processes. These findings may provide a reference for the development of high-performance Li–S batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Exploring phytoconstituent for confronting the symptoms of polycystic ovarian syndrome: molecular dynamics simulation, quantum studies, free energy calculations and network analysis approaches First-principles investigations to evaluate FeN2 as an electrocatalyst to improve the performance of Li–S batteries Quantum chemical investigations into the structural and spectroscopic properties of choline chloride-based deep eutectic solvents Enhanced photocatalytic degradation of LaMnO3/rGO nanocomposites under the irradiation of solar spectrum for methylene blue Dual purpose of graphene decorated with Cu3SnS4 as a counter electrode for dye sensitized solar cells and degradation of tetracycline antibiotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1