{"title":"具有薄 InGaN/GaN 量子阱有源区的氮化镓基垂直腔表面发射激光器的低阈值激光器","authors":"Rongbin Xu , Keisei Shibata , Hidefumi Akiyama , Jiazhe Zhang , Leiying Ying , Baoping Zhang","doi":"10.1016/j.optlastec.2024.112117","DOIUrl":null,"url":null,"abstract":"<div><div>We studied the mechanism of low-threshold lasing of InGaN/GaN double quantum well (DQW) vertical-cavity surface-emitting lasers (VCSELs) showing a low threshold energy density of about 0.37mJ/cm<sup>2</sup> via optical pumping at room temperature (RT). The QW with thin well (2.5 nm) and barrier (6 nm) led to the stronger carrier localization effect and weaker quantum confined Stark effect (QCSE). Temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) were employed on half-cavity samples (VCSEL without top distributed Bragg reflector) to study the carrier dynamics in VCSEL microcavity. Compared with epitaxial layer, half-cavity samples showed the higher turning point temperature of TDPL peak energy, and the carrier lifetime measured by TRPL was shorter. The experimental results suggest that the stronger localization effect of thin QW and the strong coupling of QW and internal optical field can contribute to the low-threshold lasing of GaN-based VCSELs.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112117"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low threshold lasing of GaN-based vertical-cavity surface-emitting lasers with thin InGaN/GaN quantum well active region\",\"authors\":\"Rongbin Xu , Keisei Shibata , Hidefumi Akiyama , Jiazhe Zhang , Leiying Ying , Baoping Zhang\",\"doi\":\"10.1016/j.optlastec.2024.112117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We studied the mechanism of low-threshold lasing of InGaN/GaN double quantum well (DQW) vertical-cavity surface-emitting lasers (VCSELs) showing a low threshold energy density of about 0.37mJ/cm<sup>2</sup> via optical pumping at room temperature (RT). The QW with thin well (2.5 nm) and barrier (6 nm) led to the stronger carrier localization effect and weaker quantum confined Stark effect (QCSE). Temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) were employed on half-cavity samples (VCSEL without top distributed Bragg reflector) to study the carrier dynamics in VCSEL microcavity. Compared with epitaxial layer, half-cavity samples showed the higher turning point temperature of TDPL peak energy, and the carrier lifetime measured by TRPL was shorter. The experimental results suggest that the stronger localization effect of thin QW and the strong coupling of QW and internal optical field can contribute to the low-threshold lasing of GaN-based VCSELs.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"182 \",\"pages\":\"Article 112117\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224015755\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224015755","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Low threshold lasing of GaN-based vertical-cavity surface-emitting lasers with thin InGaN/GaN quantum well active region
We studied the mechanism of low-threshold lasing of InGaN/GaN double quantum well (DQW) vertical-cavity surface-emitting lasers (VCSELs) showing a low threshold energy density of about 0.37mJ/cm2 via optical pumping at room temperature (RT). The QW with thin well (2.5 nm) and barrier (6 nm) led to the stronger carrier localization effect and weaker quantum confined Stark effect (QCSE). Temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) were employed on half-cavity samples (VCSEL without top distributed Bragg reflector) to study the carrier dynamics in VCSEL microcavity. Compared with epitaxial layer, half-cavity samples showed the higher turning point temperature of TDPL peak energy, and the carrier lifetime measured by TRPL was shorter. The experimental results suggest that the stronger localization effect of thin QW and the strong coupling of QW and internal optical field can contribute to the low-threshold lasing of GaN-based VCSELs.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems