基于 IBOA-AdaBoost-RVM 的短期风力发电预测

IF 3.7 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of King Saud University - Science Pub Date : 2024-11-22 DOI:10.1016/j.jksus.2024.103550
Yongliang Yuan , Qingkang Yang , Jianji Ren , Kunpeng Li , Zhenxi Wang , Yanan Li , Wu Zhao , Haiqing Liu
{"title":"基于 IBOA-AdaBoost-RVM 的短期风力发电预测","authors":"Yongliang Yuan ,&nbsp;Qingkang Yang ,&nbsp;Jianji Ren ,&nbsp;Kunpeng Li ,&nbsp;Zhenxi Wang ,&nbsp;Yanan Li ,&nbsp;Wu Zhao ,&nbsp;Haiqing Liu","doi":"10.1016/j.jksus.2024.103550","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an innovative model, namely IBOA-AdaBoost-RVM, which leverages the Improved Butterfly Optimization Algorithm (IBOA), Adaptive Boosting (AdaBoost), and Relevance Vector Machine (RVM). This model is used to solve the problem of low precision of wind power prediction. Initially, normalization is applied to reduce the influence of varying data dimensions. Subsequently, input variables are determined through the Pearson correlation method. Lastly, the efficacy of the introduced model is assessed across four distinct seasonal monthly data sets. The observed outcomes indicate that the proposed model outperforms other models in terms of evaluation metrics, with the average <em>R<sup>2</sup></em>, <em>RMSE</em>, <em>MAE</em>, and <em>MAPE</em> values across the four datasets being 0.954, 10.403, 7.032, and 0.645, respectively, show that the proposed method has potential in the field of wind power prediction.</div></div>","PeriodicalId":16205,"journal":{"name":"Journal of King Saud University - Science","volume":"36 11","pages":"Article 103550"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term wind power prediction based on IBOA-AdaBoost-RVM\",\"authors\":\"Yongliang Yuan ,&nbsp;Qingkang Yang ,&nbsp;Jianji Ren ,&nbsp;Kunpeng Li ,&nbsp;Zhenxi Wang ,&nbsp;Yanan Li ,&nbsp;Wu Zhao ,&nbsp;Haiqing Liu\",\"doi\":\"10.1016/j.jksus.2024.103550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces an innovative model, namely IBOA-AdaBoost-RVM, which leverages the Improved Butterfly Optimization Algorithm (IBOA), Adaptive Boosting (AdaBoost), and Relevance Vector Machine (RVM). This model is used to solve the problem of low precision of wind power prediction. Initially, normalization is applied to reduce the influence of varying data dimensions. Subsequently, input variables are determined through the Pearson correlation method. Lastly, the efficacy of the introduced model is assessed across four distinct seasonal monthly data sets. The observed outcomes indicate that the proposed model outperforms other models in terms of evaluation metrics, with the average <em>R<sup>2</sup></em>, <em>RMSE</em>, <em>MAE</em>, and <em>MAPE</em> values across the four datasets being 0.954, 10.403, 7.032, and 0.645, respectively, show that the proposed method has potential in the field of wind power prediction.</div></div>\",\"PeriodicalId\":16205,\"journal\":{\"name\":\"Journal of King Saud University - Science\",\"volume\":\"36 11\",\"pages\":\"Article 103550\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University - Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1018364724004622\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University - Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1018364724004622","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种创新模型,即 IBOA-AdaBoost-RVM 模型,它利用了改进的蝴蝶优化算法(IBOA)、自适应提升(AdaBoost)和相关性向量机(RVM)。该模型用于解决风能预测精度低的问题。首先,对数据进行归一化处理,以减少不同数据维度的影响。随后,通过皮尔逊相关法确定输入变量。最后,通过四个不同季节的月度数据集对所引入模型的功效进行评估。观察结果表明,所提出的模型在评价指标方面优于其他模型,四个数据集的平均 R2、RMSE、MAE 和 MAPE 值分别为 0.954、10.403、7.032 和 0.645,表明所提出的方法在风力发电预测领域具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short-term wind power prediction based on IBOA-AdaBoost-RVM
This study introduces an innovative model, namely IBOA-AdaBoost-RVM, which leverages the Improved Butterfly Optimization Algorithm (IBOA), Adaptive Boosting (AdaBoost), and Relevance Vector Machine (RVM). This model is used to solve the problem of low precision of wind power prediction. Initially, normalization is applied to reduce the influence of varying data dimensions. Subsequently, input variables are determined through the Pearson correlation method. Lastly, the efficacy of the introduced model is assessed across four distinct seasonal monthly data sets. The observed outcomes indicate that the proposed model outperforms other models in terms of evaluation metrics, with the average R2, RMSE, MAE, and MAPE values across the four datasets being 0.954, 10.403, 7.032, and 0.645, respectively, show that the proposed method has potential in the field of wind power prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of King Saud University - Science
Journal of King Saud University - Science Multidisciplinary-Multidisciplinary
CiteScore
7.20
自引率
2.60%
发文量
642
审稿时长
49 days
期刊介绍: Journal of King Saud University – Science is an official refereed publication of King Saud University and the publishing services is provided by Elsevier. It publishes peer-reviewed research articles in the fields of physics, astronomy, mathematics, statistics, chemistry, biochemistry, earth sciences, life and environmental sciences on the basis of scientific originality and interdisciplinary interest. It is devoted primarily to research papers but short communications, reviews and book reviews are also included. The editorial board and associated editors, composed of prominent scientists from around the world, are representative of the disciplines covered by the journal.
期刊最新文献
Review: Merging from traditional to potential novel breast cancer biomarkers Short-term wind power prediction based on IBOA-AdaBoost-RVM Effect of heat generation on MHD Maxwell fluid flow on a stretching cylinder embedded in a porous medium along with impact of radiation Optimizing structure-property models of three general graphical indices for thermodynamic properties of benzenoid hydrocarbons Deciphering the role of exogenously-applied vanillic acid in regulating drought stress tolerance in pea (Pisum sativum L.): Key growth and physio-biochemical attributes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1