用于葡萄串检测的感知引导型 CNN

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Mathematics and Computers in Simulation Pub Date : 2024-11-12 DOI:10.1016/j.matcom.2024.11.004
Vittoria Bruni , Giulia Dominijanni , Domenico Vitulano , Giuliana Ramella
{"title":"用于葡萄串检测的感知引导型 CNN","authors":"Vittoria Bruni ,&nbsp;Giulia Dominijanni ,&nbsp;Domenico Vitulano ,&nbsp;Giuliana Ramella","doi":"10.1016/j.matcom.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>Precision Viticulture (PV) is becoming an active and interdisciplinary research field since it requires solving interesting research issues to concretely answer the demands of specific use cases. A challenging problem in this context is the development of automatic methods for yield estimation. Computer vision methods can contribute to the accomplishment of this task, especially those that can replicate what winemakers do manually. In this paper, an automatic artificial intelligence method for grape bunch detection from RGB images is presented. A customized Convolutional Neural Network (CNN) is employed for pointwise classification of image pixels and the dependence of classification results on the type of input color channels and grapes color properties are studied. The advantage of using additional perception-based input features, such as luminance and visual contrast, is also evaluated, as well as the dependence of the method on the choice of the training set in terms of the amount of labeled data. The latter point has a significant impact on the practical use of the method on-site, its usability by non-expert users, and its adaptability to individual vineyards. Experimental results show that a properly trained CNN can discriminate and detect grape bunches even under uncontrolled acquisition conditions and with limited computational load, making the proposed method implementable on smart devices and suitable for on-site and real-time applications.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"230 ","pages":"Pages 111-130"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A perception-guided CNN for grape bunch detection\",\"authors\":\"Vittoria Bruni ,&nbsp;Giulia Dominijanni ,&nbsp;Domenico Vitulano ,&nbsp;Giuliana Ramella\",\"doi\":\"10.1016/j.matcom.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precision Viticulture (PV) is becoming an active and interdisciplinary research field since it requires solving interesting research issues to concretely answer the demands of specific use cases. A challenging problem in this context is the development of automatic methods for yield estimation. Computer vision methods can contribute to the accomplishment of this task, especially those that can replicate what winemakers do manually. In this paper, an automatic artificial intelligence method for grape bunch detection from RGB images is presented. A customized Convolutional Neural Network (CNN) is employed for pointwise classification of image pixels and the dependence of classification results on the type of input color channels and grapes color properties are studied. The advantage of using additional perception-based input features, such as luminance and visual contrast, is also evaluated, as well as the dependence of the method on the choice of the training set in terms of the amount of labeled data. The latter point has a significant impact on the practical use of the method on-site, its usability by non-expert users, and its adaptability to individual vineyards. Experimental results show that a properly trained CNN can discriminate and detect grape bunches even under uncontrolled acquisition conditions and with limited computational load, making the proposed method implementable on smart devices and suitable for on-site and real-time applications.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"230 \",\"pages\":\"Pages 111-130\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424004464\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004464","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

精准葡萄栽培(PV)正在成为一个活跃的跨学科研究领域,因为它需要解决一些有趣的研究问题,以具体满足特定用途的需求。在此背景下,一个具有挑战性的问题是开发产量估算的自动方法。计算机视觉方法可以帮助完成这项任务,尤其是那些可以复制酿酒师手工操作的方法。本文介绍了一种从 RGB 图像中自动检测葡萄串的人工智能方法。采用定制的卷积神经网络(CNN)对图像像素进行点分类,并研究了分类结果对输入颜色通道类型和葡萄颜色属性的依赖性。此外,还评估了使用其他基于感知的输入特征(如亮度和视觉对比度)的优势,以及该方法在标记数据量方面对训练集选择的依赖性。后一点对该方法的现场实际使用、非专业用户的可用性以及对各个葡萄园的适应性都有重大影响。实验结果表明,即使在不受控的采集条件下,经过适当训练的 CNN 也能在有限的计算负荷下分辨和检测葡萄串,这使得所提出的方法可以在智能设备上实现,并适用于现场和实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A perception-guided CNN for grape bunch detection
Precision Viticulture (PV) is becoming an active and interdisciplinary research field since it requires solving interesting research issues to concretely answer the demands of specific use cases. A challenging problem in this context is the development of automatic methods for yield estimation. Computer vision methods can contribute to the accomplishment of this task, especially those that can replicate what winemakers do manually. In this paper, an automatic artificial intelligence method for grape bunch detection from RGB images is presented. A customized Convolutional Neural Network (CNN) is employed for pointwise classification of image pixels and the dependence of classification results on the type of input color channels and grapes color properties are studied. The advantage of using additional perception-based input features, such as luminance and visual contrast, is also evaluated, as well as the dependence of the method on the choice of the training set in terms of the amount of labeled data. The latter point has a significant impact on the practical use of the method on-site, its usability by non-expert users, and its adaptability to individual vineyards. Experimental results show that a properly trained CNN can discriminate and detect grape bunches even under uncontrolled acquisition conditions and with limited computational load, making the proposed method implementable on smart devices and suitable for on-site and real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
期刊最新文献
Pattern formation of Cucker–Smale system with nonlinear velocity couplings Stabilization of nonlinear stochastic systems via event-triggered impulsive control Energy-preserving exponential wave integrator method and the long-time dynamics for the two-dimensional space fractional coupled Klein–Gordon–Dirac equation A digital twin approach based method in civil engineering for classification of salt damage in building evaluation Discrete gradient-zeroing neural network algorithm for solving future Sylvester equation aided with left–right four-step rule as well as robot arm inverse kinematics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1