Yener Eyuboglu , Ze Liu , Dicheng Zhu , Nilanjan Chatterjee , Liangliang Zhang , Jincheng Xie , Francis O. Dudas
{"title":"东庞提德山脉(图尔基耶东北部)晚三叠世至中侏罗世岩浆活动:古地台岩石圈分异双俯冲的证据","authors":"Yener Eyuboglu , Ze Liu , Dicheng Zhu , Nilanjan Chatterjee , Liangliang Zhang , Jincheng Xie , Francis O. Dudas","doi":"10.1016/j.gsf.2024.101952","DOIUrl":null,"url":null,"abstract":"<div><div>The Meso-Cenozoic geodynamic evolution of northern Türkiye remains a subject of debate primarily due to a lack of systematic geological, geochemical, geochronological, and geophysical investigations. This paper presents comprehensive geochronological and geochemical data on the Late Triassic andesite porphyry, andesite breccia and quartz diorite porphyry, and the Middle Jurassic diabase, and amphibole-poor and amphibole-rich andesite porphyry from Çevrepınar Igneous Complex (Gümüşhane) in the southern part of the Eastern Pontides Orogenic Belt (EPOB), a well-preserved continental arc in the Alpine-Himalayan orogen. Zircon U–Pb geochronology indicates crystallization ages of ∼208–202 Ma (Rhaetian) for the Late Triassic rocks and ∼175–172 Ma (Aalenian) for the Middle Jurassic rocks. Whole-rock geochemical and Sr-Nd-Pb isotopic data, and zircon <em>ε</em><sub>Hf</sub>(<em>t</em>) data indicate that both the Late Triassic and the Middle Jurassic rocks originated by low-degree melting of a spinel lherzolite lithospheric mantle source modified by subduction-related fluids and/or melts. Based on the new and published data, we suggest that the Late Triassic to Middle Jurassic arc magmatism in EPOB occurred as a result of southward subduction of the Paleo-Tethys oceanic lithosphere beneath the northern margin of Gondwana-Land. Late Triassic to Jurassic arc magmatism and basin evolution occurred synchronously in the northern and southern peripheries of the present-day Eastern Black Sea Basin, indicating divergent double subduction of the Paleo-Tethys oceanic lithosphere beneath the northern margin of Gondwana and southern margin of Laurasia during the Early Mesozoic.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 1","pages":"Article 101952"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late Triassic to Middle Jurassic magmatism in the Eastern Pontides (NE Türkiye): Evidence for divergent double subduction of Paleo-Tethys lithosphere\",\"authors\":\"Yener Eyuboglu , Ze Liu , Dicheng Zhu , Nilanjan Chatterjee , Liangliang Zhang , Jincheng Xie , Francis O. Dudas\",\"doi\":\"10.1016/j.gsf.2024.101952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Meso-Cenozoic geodynamic evolution of northern Türkiye remains a subject of debate primarily due to a lack of systematic geological, geochemical, geochronological, and geophysical investigations. This paper presents comprehensive geochronological and geochemical data on the Late Triassic andesite porphyry, andesite breccia and quartz diorite porphyry, and the Middle Jurassic diabase, and amphibole-poor and amphibole-rich andesite porphyry from Çevrepınar Igneous Complex (Gümüşhane) in the southern part of the Eastern Pontides Orogenic Belt (EPOB), a well-preserved continental arc in the Alpine-Himalayan orogen. Zircon U–Pb geochronology indicates crystallization ages of ∼208–202 Ma (Rhaetian) for the Late Triassic rocks and ∼175–172 Ma (Aalenian) for the Middle Jurassic rocks. Whole-rock geochemical and Sr-Nd-Pb isotopic data, and zircon <em>ε</em><sub>Hf</sub>(<em>t</em>) data indicate that both the Late Triassic and the Middle Jurassic rocks originated by low-degree melting of a spinel lherzolite lithospheric mantle source modified by subduction-related fluids and/or melts. Based on the new and published data, we suggest that the Late Triassic to Middle Jurassic arc magmatism in EPOB occurred as a result of southward subduction of the Paleo-Tethys oceanic lithosphere beneath the northern margin of Gondwana-Land. Late Triassic to Jurassic arc magmatism and basin evolution occurred synchronously in the northern and southern peripheries of the present-day Eastern Black Sea Basin, indicating divergent double subduction of the Paleo-Tethys oceanic lithosphere beneath the northern margin of Gondwana and southern margin of Laurasia during the Early Mesozoic.</div></div>\",\"PeriodicalId\":12711,\"journal\":{\"name\":\"Geoscience frontiers\",\"volume\":\"16 1\",\"pages\":\"Article 101952\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience frontiers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674987124001762\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987124001762","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Late Triassic to Middle Jurassic magmatism in the Eastern Pontides (NE Türkiye): Evidence for divergent double subduction of Paleo-Tethys lithosphere
The Meso-Cenozoic geodynamic evolution of northern Türkiye remains a subject of debate primarily due to a lack of systematic geological, geochemical, geochronological, and geophysical investigations. This paper presents comprehensive geochronological and geochemical data on the Late Triassic andesite porphyry, andesite breccia and quartz diorite porphyry, and the Middle Jurassic diabase, and amphibole-poor and amphibole-rich andesite porphyry from Çevrepınar Igneous Complex (Gümüşhane) in the southern part of the Eastern Pontides Orogenic Belt (EPOB), a well-preserved continental arc in the Alpine-Himalayan orogen. Zircon U–Pb geochronology indicates crystallization ages of ∼208–202 Ma (Rhaetian) for the Late Triassic rocks and ∼175–172 Ma (Aalenian) for the Middle Jurassic rocks. Whole-rock geochemical and Sr-Nd-Pb isotopic data, and zircon εHf(t) data indicate that both the Late Triassic and the Middle Jurassic rocks originated by low-degree melting of a spinel lherzolite lithospheric mantle source modified by subduction-related fluids and/or melts. Based on the new and published data, we suggest that the Late Triassic to Middle Jurassic arc magmatism in EPOB occurred as a result of southward subduction of the Paleo-Tethys oceanic lithosphere beneath the northern margin of Gondwana-Land. Late Triassic to Jurassic arc magmatism and basin evolution occurred synchronously in the northern and southern peripheries of the present-day Eastern Black Sea Basin, indicating divergent double subduction of the Paleo-Tethys oceanic lithosphere beneath the northern margin of Gondwana and southern margin of Laurasia during the Early Mesozoic.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.