二氧化硅锚定 CdSe/ZnS 量子点的随机激光增强效应

IF 4.6 2区 物理与天体物理 Q1 OPTICS Optics and Laser Technology Pub Date : 2024-11-15 DOI:10.1016/j.optlastec.2024.112124
Lihua Ye, Deyang Niu, Chunguang Lu, Bing Gu, Shuhong Xu
{"title":"二氧化硅锚定 CdSe/ZnS 量子点的随机激光增强效应","authors":"Lihua Ye,&nbsp;Deyang Niu,&nbsp;Chunguang Lu,&nbsp;Bing Gu,&nbsp;Shuhong Xu","doi":"10.1016/j.optlastec.2024.112124","DOIUrl":null,"url":null,"abstract":"<div><div>This article explores the characteristics of random laser emission in CdSe/ZnS quantum dots (QDs) anchored by SiO<sub>2</sub>, demonstrating the achievement of low thresholds and high stability random laser. The incorporation of CdSe/ZnS QDs onto the SiO<sub>2</sub> surface builds SiO<sub>2</sub>-QDs (SQ). SQ promotes the dispersion of quantum dots, effectively reducing Förster resonance energy transfer (FRET) and fluorescence quenching. In this system, SiO<sub>2</sub> acts as a scattering particle, providing multiple scattering events for random laser generation, and consequently achieving a low threshold for random laser emission. Various SiO<sub>2</sub> nanoparticles with average sizes of 120 nm, 200 nm, 300 nm, 450 nm, and 600 nm are synthesized, and corresponding SQ are prepared. The random laser thresholds exhibit a gradual decrease with increasing SiO<sub>2</sub> particle size, measuring 2.3 mJ/cm<sup>2</sup> (120 nm SiO<sub>2</sub>) to 1.4 mJ/cm<sup>2</sup> (600 nm SiO<sub>2</sub>). The above trend can be attributed to the concurrent increase in the scattering cross-section of SiO<sub>2</sub> particles, leading to enhanced multiple scattering intensities within the random laser system. Furthermore, a SiO<sub>2</sub>-QDs-SiO<sub>2</sub> (SQS) is developed by encapsulating SQ with a silicon shell, offering protection against environmental factors such as water and oxygen. The additional out layer improves the stability of SQS, resulting in a random laser with both low threshold and high stability.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112124"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random lasing enhancement effect on SiO2 anchored CdSe/ZnS quantum dots\",\"authors\":\"Lihua Ye,&nbsp;Deyang Niu,&nbsp;Chunguang Lu,&nbsp;Bing Gu,&nbsp;Shuhong Xu\",\"doi\":\"10.1016/j.optlastec.2024.112124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article explores the characteristics of random laser emission in CdSe/ZnS quantum dots (QDs) anchored by SiO<sub>2</sub>, demonstrating the achievement of low thresholds and high stability random laser. The incorporation of CdSe/ZnS QDs onto the SiO<sub>2</sub> surface builds SiO<sub>2</sub>-QDs (SQ). SQ promotes the dispersion of quantum dots, effectively reducing Förster resonance energy transfer (FRET) and fluorescence quenching. In this system, SiO<sub>2</sub> acts as a scattering particle, providing multiple scattering events for random laser generation, and consequently achieving a low threshold for random laser emission. Various SiO<sub>2</sub> nanoparticles with average sizes of 120 nm, 200 nm, 300 nm, 450 nm, and 600 nm are synthesized, and corresponding SQ are prepared. The random laser thresholds exhibit a gradual decrease with increasing SiO<sub>2</sub> particle size, measuring 2.3 mJ/cm<sup>2</sup> (120 nm SiO<sub>2</sub>) to 1.4 mJ/cm<sup>2</sup> (600 nm SiO<sub>2</sub>). The above trend can be attributed to the concurrent increase in the scattering cross-section of SiO<sub>2</sub> particles, leading to enhanced multiple scattering intensities within the random laser system. Furthermore, a SiO<sub>2</sub>-QDs-SiO<sub>2</sub> (SQS) is developed by encapsulating SQ with a silicon shell, offering protection against environmental factors such as water and oxygen. The additional out layer improves the stability of SQS, resulting in a random laser with both low threshold and high stability.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"182 \",\"pages\":\"Article 112124\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224015822\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224015822","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了由二氧化硅锚定的镉硒/锌硒量子点(QDs)的随机激光发射特性,展示了低阈值和高稳定性随机激光的实现。将 CdSe/ZnS 量子点掺入 SiO2 表面可形成 SiO2-QDs(SQ)。SQ 可促进量子点的分散,有效减少佛斯特共振能量转移(FRET)和荧光淬灭。在这一系统中,二氧化硅充当散射粒子,为随机激光的产生提供多个散射事件,从而实现较低的随机激光发射阈值。我们合成了平均尺寸为 120 nm、200 nm、300 nm、450 nm 和 600 nm 的各种 SiO2 纳米粒子,并制备了相应的 SQ。随机激光阈值随着 SiO2 粒径的增加而逐渐降低,从 2.3 mJ/cm2(120 nm SiO2)降至 1.4 mJ/cm2(600 nm SiO2)。上述趋势可归因于 SiO2 粒子的散射截面同时增大,导致随机激光系统内的多重散射强度增强。此外,SiO2-QDs-SiO2(SQS)是通过将 SQ 与硅壳封装在一起而开发出来的,可防止水和氧气等环境因素的影响。额外的外层提高了 SQS 的稳定性,从而产生了低阈值和高稳定性的随机激光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random lasing enhancement effect on SiO2 anchored CdSe/ZnS quantum dots
This article explores the characteristics of random laser emission in CdSe/ZnS quantum dots (QDs) anchored by SiO2, demonstrating the achievement of low thresholds and high stability random laser. The incorporation of CdSe/ZnS QDs onto the SiO2 surface builds SiO2-QDs (SQ). SQ promotes the dispersion of quantum dots, effectively reducing Förster resonance energy transfer (FRET) and fluorescence quenching. In this system, SiO2 acts as a scattering particle, providing multiple scattering events for random laser generation, and consequently achieving a low threshold for random laser emission. Various SiO2 nanoparticles with average sizes of 120 nm, 200 nm, 300 nm, 450 nm, and 600 nm are synthesized, and corresponding SQ are prepared. The random laser thresholds exhibit a gradual decrease with increasing SiO2 particle size, measuring 2.3 mJ/cm2 (120 nm SiO2) to 1.4 mJ/cm2 (600 nm SiO2). The above trend can be attributed to the concurrent increase in the scattering cross-section of SiO2 particles, leading to enhanced multiple scattering intensities within the random laser system. Furthermore, a SiO2-QDs-SiO2 (SQS) is developed by encapsulating SQ with a silicon shell, offering protection against environmental factors such as water and oxygen. The additional out layer improves the stability of SQS, resulting in a random laser with both low threshold and high stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
期刊最新文献
Long-term high-precision monitoring system for laser parameters in large-aperture dual-wavelength LiDAR Ablation-cooling effect during nanosecond laser precision machining of CFRP Bulk damage growth characteristics and ultrafast diagnosis of fluoride-containing phosphate glasses induced by 355-nm laser A robust feature-based full-field initial value estimation in path-independent digital image correlation for large deformation measurement High-quality Fourier single-pixel imaging via a block-scanning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1