基于 YOLOv8-GB 模型的钢筋间距自动测量方法

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-11-21 DOI:10.1016/j.measurement.2024.116278
Jiayin Song , Teng Lu , Ting Liao , Zhuoyuan Jiang , Qinglin Zhu , Jinlong Wang , Liusong Yang , Hongwei Zhou , Wenlong Song
{"title":"基于 YOLOv8-GB 模型的钢筋间距自动测量方法","authors":"Jiayin Song ,&nbsp;Teng Lu ,&nbsp;Ting Liao ,&nbsp;Zhuoyuan Jiang ,&nbsp;Qinglin Zhu ,&nbsp;Jinlong Wang ,&nbsp;Liusong Yang ,&nbsp;Hongwei Zhou ,&nbsp;Wenlong Song","doi":"10.1016/j.measurement.2024.116278","DOIUrl":null,"url":null,"abstract":"<div><div>In engineering construction projects, rebar spacing measurement requires significant manual labor with low efficiency. This paper proposes a new intelligent rebar spacing measurement method based on the YOLOv8-GB model to save the workforce and improve efficiency. This method collects images of rebars to be measured using a binocular camera, utilizes the proposed YOLOv8-GB model to extract rebars from the scene, and achieves spacing measurement. The system is deployed on the NVIDIA Jetson TX2 NX for on-site portable measurement and can run in real-time at 24 frames per second. Experimental results show that the improved YOLOv8-GB network, compared with the YOLOv8n network, increased Recall, Precision, [email protected], and mAP50-95 by 0.6 %, 5.5 %, 2.3 %, and 7.6 %, respectively. The measurement system built with YOLOv8-GB achieved an average absolute error of ± 1.7 mm, ±2.1 mm, and ± 2.7 mm for rebar spacing measurements on three different ground textures, with average relative errors of 0.85 %, 0.93 %, and 1.32 %, meeting engineering requirements. Compared to the measurement system built with YOLOv8n, the average absolute error decreased by 37.0 %, 8.0 %, and 25.0 % under the three different ground textures, while the average relative error decreased by 36.1 %, 8.8 %, and 23.7 %, respectively.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116278"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automatic rebar spacing measuring method based on the YOLOv8-GB model\",\"authors\":\"Jiayin Song ,&nbsp;Teng Lu ,&nbsp;Ting Liao ,&nbsp;Zhuoyuan Jiang ,&nbsp;Qinglin Zhu ,&nbsp;Jinlong Wang ,&nbsp;Liusong Yang ,&nbsp;Hongwei Zhou ,&nbsp;Wenlong Song\",\"doi\":\"10.1016/j.measurement.2024.116278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In engineering construction projects, rebar spacing measurement requires significant manual labor with low efficiency. This paper proposes a new intelligent rebar spacing measurement method based on the YOLOv8-GB model to save the workforce and improve efficiency. This method collects images of rebars to be measured using a binocular camera, utilizes the proposed YOLOv8-GB model to extract rebars from the scene, and achieves spacing measurement. The system is deployed on the NVIDIA Jetson TX2 NX for on-site portable measurement and can run in real-time at 24 frames per second. Experimental results show that the improved YOLOv8-GB network, compared with the YOLOv8n network, increased Recall, Precision, [email protected], and mAP50-95 by 0.6 %, 5.5 %, 2.3 %, and 7.6 %, respectively. The measurement system built with YOLOv8-GB achieved an average absolute error of ± 1.7 mm, ±2.1 mm, and ± 2.7 mm for rebar spacing measurements on three different ground textures, with average relative errors of 0.85 %, 0.93 %, and 1.32 %, meeting engineering requirements. Compared to the measurement system built with YOLOv8n, the average absolute error decreased by 37.0 %, 8.0 %, and 25.0 % under the three different ground textures, while the average relative error decreased by 36.1 %, 8.8 %, and 23.7 %, respectively.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"242 \",\"pages\":\"Article 116278\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224124021638\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124021638","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在工程建设项目中,钢筋间距测量需要大量的人工劳动,效率较低。本文提出了一种基于 YOLOv8-GB 模型的新型智能钢筋间距测量方法,以节省劳动力并提高效率。该方法使用双目摄像头采集待测钢筋图像,利用提出的 YOLOv8-GB 模型从场景中提取钢筋,并实现间距测量。该系统部署在 NVIDIA Jetson TX2 NX 上,用于现场便携式测量,可以每秒 24 帧的速度实时运行。实验结果表明,与 YOLOv8n 网络相比,改进后的 YOLOv8-GB 网络在 Recall、Precision、[email protected] 和 mAP50-95 方面分别提高了 0.6%、5.5%、2.3% 和 7.6%。使用 YOLOv8-GB 构建的测量系统在三种不同地面纹理上测量钢筋间距时,平均绝对误差分别为 ± 1.7 mm、±2.1 mm 和 ± 2.7 mm,平均相对误差分别为 0.85 %、0.93 % 和 1.32 %,满足工程要求。与使用 YOLOv8n 建立的测量系统相比,在三种不同的地面纹理下,平均绝对误差分别减少了 37.0 %、8.0 % 和 25.0 %,平均相对误差分别减少了 36.1 %、8.8 % 和 23.7 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An automatic rebar spacing measuring method based on the YOLOv8-GB model
In engineering construction projects, rebar spacing measurement requires significant manual labor with low efficiency. This paper proposes a new intelligent rebar spacing measurement method based on the YOLOv8-GB model to save the workforce and improve efficiency. This method collects images of rebars to be measured using a binocular camera, utilizes the proposed YOLOv8-GB model to extract rebars from the scene, and achieves spacing measurement. The system is deployed on the NVIDIA Jetson TX2 NX for on-site portable measurement and can run in real-time at 24 frames per second. Experimental results show that the improved YOLOv8-GB network, compared with the YOLOv8n network, increased Recall, Precision, [email protected], and mAP50-95 by 0.6 %, 5.5 %, 2.3 %, and 7.6 %, respectively. The measurement system built with YOLOv8-GB achieved an average absolute error of ± 1.7 mm, ±2.1 mm, and ± 2.7 mm for rebar spacing measurements on three different ground textures, with average relative errors of 0.85 %, 0.93 %, and 1.32 %, meeting engineering requirements. Compared to the measurement system built with YOLOv8n, the average absolute error decreased by 37.0 %, 8.0 %, and 25.0 % under the three different ground textures, while the average relative error decreased by 36.1 %, 8.8 %, and 23.7 %, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Shape sensing technology based on fiber Bragg grating for flexible instrument Characterization and visualization of gas–liquid two-phase flow based on wire-mesh sensor Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning Opto-mechanical-thermal integration design of the primary optical system for a tri-band aviation camera Calibration of multi-robot coordinates for collaborative wire arc additive manufacturing using cross-source 3D point cloud models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1