{"title":"化学短程有序对中熵铬钴镍合金位移级联的影响","authors":"Yuzhou Liang, Chuanlong Xu, Xiaobao Tian, Qingyuan Wang, Wentao Jiang, Haidong Fan","doi":"10.1016/j.nimb.2024.165581","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical short-range order (CSRO) is an important structure in high/medium entropy alloys (H/MEAs), which has a significant influence on the mechanical properties of irradiated materials. In this work, molecular dynamics (MD) simulations are performed to investigate the effects of CSRO on the point defect evolution during displacement cascade in medium-entropy CrCoNi alloys. To validate the influence of CSRO on point defects, multi-displacement cascades were initially conducted on the alloy. The results indicate that the CSRO structure can notably diminish dislocation and defect densities. Then, the influence of the CSRO structure on point defects under single displacement cascade was discussed. Both the peak number of point defects and the number of surviving point defects decrease with the increasing degree of CSRO during the single displacement cascade, indicating that the CSRO enhances the irradiation-resistance of irradiated materials. The Ni-rich region in CSRO can inhibit the formation of point defects due to its higher formation energy barrier. While the Co-Cr region in CSRO was found to promote the migration of point defects that can facilitate their recombination due to the lower migration energy. The current work provides new insights into understanding the evolution of irradiation-induced defects and mechanical properties of irradiated M/HEAs.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"559 ","pages":"Article 165581"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of chemical short-range order on displacement cascade in medium-entropy CrCoNi alloys\",\"authors\":\"Yuzhou Liang, Chuanlong Xu, Xiaobao Tian, Qingyuan Wang, Wentao Jiang, Haidong Fan\",\"doi\":\"10.1016/j.nimb.2024.165581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chemical short-range order (CSRO) is an important structure in high/medium entropy alloys (H/MEAs), which has a significant influence on the mechanical properties of irradiated materials. In this work, molecular dynamics (MD) simulations are performed to investigate the effects of CSRO on the point defect evolution during displacement cascade in medium-entropy CrCoNi alloys. To validate the influence of CSRO on point defects, multi-displacement cascades were initially conducted on the alloy. The results indicate that the CSRO structure can notably diminish dislocation and defect densities. Then, the influence of the CSRO structure on point defects under single displacement cascade was discussed. Both the peak number of point defects and the number of surviving point defects decrease with the increasing degree of CSRO during the single displacement cascade, indicating that the CSRO enhances the irradiation-resistance of irradiated materials. The Ni-rich region in CSRO can inhibit the formation of point defects due to its higher formation energy barrier. While the Co-Cr region in CSRO was found to promote the migration of point defects that can facilitate their recombination due to the lower migration energy. The current work provides new insights into understanding the evolution of irradiation-induced defects and mechanical properties of irradiated M/HEAs.</div></div>\",\"PeriodicalId\":19380,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms\",\"volume\":\"559 \",\"pages\":\"Article 165581\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168583X24003513\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168583X24003513","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Effects of chemical short-range order on displacement cascade in medium-entropy CrCoNi alloys
Chemical short-range order (CSRO) is an important structure in high/medium entropy alloys (H/MEAs), which has a significant influence on the mechanical properties of irradiated materials. In this work, molecular dynamics (MD) simulations are performed to investigate the effects of CSRO on the point defect evolution during displacement cascade in medium-entropy CrCoNi alloys. To validate the influence of CSRO on point defects, multi-displacement cascades were initially conducted on the alloy. The results indicate that the CSRO structure can notably diminish dislocation and defect densities. Then, the influence of the CSRO structure on point defects under single displacement cascade was discussed. Both the peak number of point defects and the number of surviving point defects decrease with the increasing degree of CSRO during the single displacement cascade, indicating that the CSRO enhances the irradiation-resistance of irradiated materials. The Ni-rich region in CSRO can inhibit the formation of point defects due to its higher formation energy barrier. While the Co-Cr region in CSRO was found to promote the migration of point defects that can facilitate their recombination due to the lower migration energy. The current work provides new insights into understanding the evolution of irradiation-induced defects and mechanical properties of irradiated M/HEAs.
期刊介绍:
Section B of Nuclear Instruments and Methods in Physics Research covers all aspects of the interaction of energetic beams with atoms, molecules and aggregate forms of matter. This includes ion beam analysis and ion beam modification of materials as well as basic data of importance for these studies. Topics of general interest include: atomic collisions in solids, particle channelling, all aspects of collision cascades, the modification of materials by energetic beams, ion implantation, irradiation - induced changes in materials, the physics and chemistry of beam interactions and the analysis of materials by all forms of energetic radiation. Modification by ion, laser and electron beams for the study of electronic materials, metals, ceramics, insulators, polymers and other important and new materials systems are included. Related studies, such as the application of ion beam analysis to biological, archaeological and geological samples as well as applications to solve problems in planetary science are also welcome. Energetic beams of interest include atomic and molecular ions, neutrons, positrons and muons, plasmas directed at surfaces, electron and photon beams, including laser treated surfaces and studies of solids by photon radiation from rotating anodes, synchrotrons, etc. In addition, the interaction between various forms of radiation and radiation-induced deposition processes are relevant.