利用模糊综合评价法对光纤传感器采集的球形心动图进行质量评价

IF 2.6 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Optical Fiber Technology Pub Date : 2024-11-26 DOI:10.1016/j.yofte.2024.104046
Jianing Ma , Zhiguo Jiang , Shuxia Qian , Bingchen Yan , Xianchao Zhang
{"title":"利用模糊综合评价法对光纤传感器采集的球形心动图进行质量评价","authors":"Jianing Ma ,&nbsp;Zhiguo Jiang ,&nbsp;Shuxia Qian ,&nbsp;Bingchen Yan ,&nbsp;Xianchao Zhang","doi":"10.1016/j.yofte.2024.104046","DOIUrl":null,"url":null,"abstract":"<div><div>Evaluating the quality of ballistocardiogram (BCG) is crucial for enhancing the accuracy of subsequent physiological parameter extraction. The micro-bend fiber optic BCG sensor and fiber Bragg grating BCG sensor are designed and manufactured, and experiments show that they can effectively acquire BCG. A BCG quality evaluation model based on fuzzy comprehensive evaluation is established, which uses four BCG evaluation indicators in time-domain and frequency-domain, including ratio of coefficient of variation, matching degree of J-wave detection, ratio of power spectral density, coefficient of template matching. By analyzing the quality of 800 manually labeled signal samples, the fuzzy membership functions for the four BCG evaluation indicators are determined. Considering the different noise features of various fiber optic sensors, different weight distributions are applied to BCG evaluation indicators for the micro-bend fiber optic BCG sensor and fiber Bragg grating BCG sensor. Applying the quality evaluation model to signals acquired at different times from two types of fiber optic sensors, and classifying them into excellent, average, and poor categories, the accuracy of BCG quality determination for the two types of sensors is 84.50% and 85.25%, respectively.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"89 ","pages":"Article 104046"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality evaluation of ballistocardiogram from fiber optic sensors using fuzzy comprehensive evaluation method\",\"authors\":\"Jianing Ma ,&nbsp;Zhiguo Jiang ,&nbsp;Shuxia Qian ,&nbsp;Bingchen Yan ,&nbsp;Xianchao Zhang\",\"doi\":\"10.1016/j.yofte.2024.104046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Evaluating the quality of ballistocardiogram (BCG) is crucial for enhancing the accuracy of subsequent physiological parameter extraction. The micro-bend fiber optic BCG sensor and fiber Bragg grating BCG sensor are designed and manufactured, and experiments show that they can effectively acquire BCG. A BCG quality evaluation model based on fuzzy comprehensive evaluation is established, which uses four BCG evaluation indicators in time-domain and frequency-domain, including ratio of coefficient of variation, matching degree of J-wave detection, ratio of power spectral density, coefficient of template matching. By analyzing the quality of 800 manually labeled signal samples, the fuzzy membership functions for the four BCG evaluation indicators are determined. Considering the different noise features of various fiber optic sensors, different weight distributions are applied to BCG evaluation indicators for the micro-bend fiber optic BCG sensor and fiber Bragg grating BCG sensor. Applying the quality evaluation model to signals acquired at different times from two types of fiber optic sensors, and classifying them into excellent, average, and poor categories, the accuracy of BCG quality determination for the two types of sensors is 84.50% and 85.25%, respectively.</div></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"89 \",\"pages\":\"Article 104046\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1068520024003912\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024003912","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

评估球形心动图(BCG)的质量对于提高后续生理参数提取的准确性至关重要。本文设计并制造了微弯光纤 BCG 传感器和光纤布拉格光栅 BCG 传感器,实验表明它们能有效地获取 BCG。建立了基于模糊综合评价的BCG质量评价模型,采用时域和频域四个BCG评价指标,包括变异系数比、J波检测匹配度、功率谱密度比、模板匹配系数。通过对 800 个人工标注信号样本的质量分析,确定了 BCG 四项评价指标的模糊成员函数。考虑到各种光纤传感器的噪声特征不同,对微弯光纤 BCG 传感器和光纤布拉格光栅 BCG 传感器的 BCG 评价指标采用了不同的权重分布。将质量评价模型应用于两类光纤传感器在不同时间采集的信号,并将其分为优、中、差三类,两类传感器的 BCG 质量判定准确率分别为 84.50%和 85.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quality evaluation of ballistocardiogram from fiber optic sensors using fuzzy comprehensive evaluation method
Evaluating the quality of ballistocardiogram (BCG) is crucial for enhancing the accuracy of subsequent physiological parameter extraction. The micro-bend fiber optic BCG sensor and fiber Bragg grating BCG sensor are designed and manufactured, and experiments show that they can effectively acquire BCG. A BCG quality evaluation model based on fuzzy comprehensive evaluation is established, which uses four BCG evaluation indicators in time-domain and frequency-domain, including ratio of coefficient of variation, matching degree of J-wave detection, ratio of power spectral density, coefficient of template matching. By analyzing the quality of 800 manually labeled signal samples, the fuzzy membership functions for the four BCG evaluation indicators are determined. Considering the different noise features of various fiber optic sensors, different weight distributions are applied to BCG evaluation indicators for the micro-bend fiber optic BCG sensor and fiber Bragg grating BCG sensor. Applying the quality evaluation model to signals acquired at different times from two types of fiber optic sensors, and classifying them into excellent, average, and poor categories, the accuracy of BCG quality determination for the two types of sensors is 84.50% and 85.25%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Fiber Technology
Optical Fiber Technology 工程技术-电信学
CiteScore
4.80
自引率
11.10%
发文量
327
审稿时长
63 days
期刊介绍: Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews. Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.
期刊最新文献
Machine learning model based on the time domain regular perturbation-based theory for performance estimation in arbitrary heterogeneous optical links Quick fabrication method of a thermally expanded core in polarization-maintaining fibers using CO2 laser and fiber rotation Load adaptive multi-threshold scheduling to concurrently improvise transmission time and wait time performance of C-RAN A comparison between black-, gray- and white-box modeling for the bidirectional Raman amplifier optimization Development of FBG-based road ice thickness monitoring sensor and its application on the traffic road
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1