通过贝叶斯优化法开发用于增材制造的氧化铝浆料

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Open Ceramics Pub Date : 2024-11-19 DOI:10.1016/j.oceram.2024.100705
Johannes Schubert , Pascal Friederich , Benedikt Burchard , Frederik Zanger
{"title":"通过贝叶斯优化法开发用于增材制造的氧化铝浆料","authors":"Johannes Schubert ,&nbsp;Pascal Friederich ,&nbsp;Benedikt Burchard ,&nbsp;Frederik Zanger","doi":"10.1016/j.oceram.2024.100705","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing by vat photopolymerization (VPP) enables the flexible production of ceramic components. The process requires ceramic slurries consisting of a photosensitive binder system and ceramic powder. To prevent defects during debinding and sintering, the highest possible content of ceramic particles is desired. At the same time, a certain viscosity must not be exceeded to ensure the processability in the VPP process. This conflict of objectives requires a precise adjustment of the large amount of slurry constituents. Hence, an experimental slurry development and optimization is very expensive and time-consuming. Therefore, Bayesian optimization, an artificial intelligence (AI) approach, was used to enhance an experimental optimization of the slurry composition. Using this approach, it was possible to achieve in less than 40 optimization steps an aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) slurry suitable for VPP with a content of 65 vol.% ceramic powder, the highest currently known fraction for Al<sub>2</sub>O<sub>3</sub> in VPP slurries.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100705"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of aluminum oxide slurries for additive manufacturing by Bayesian optimization\",\"authors\":\"Johannes Schubert ,&nbsp;Pascal Friederich ,&nbsp;Benedikt Burchard ,&nbsp;Frederik Zanger\",\"doi\":\"10.1016/j.oceram.2024.100705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Additive manufacturing by vat photopolymerization (VPP) enables the flexible production of ceramic components. The process requires ceramic slurries consisting of a photosensitive binder system and ceramic powder. To prevent defects during debinding and sintering, the highest possible content of ceramic particles is desired. At the same time, a certain viscosity must not be exceeded to ensure the processability in the VPP process. This conflict of objectives requires a precise adjustment of the large amount of slurry constituents. Hence, an experimental slurry development and optimization is very expensive and time-consuming. Therefore, Bayesian optimization, an artificial intelligence (AI) approach, was used to enhance an experimental optimization of the slurry composition. Using this approach, it was possible to achieve in less than 40 optimization steps an aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) slurry suitable for VPP with a content of 65 vol.% ceramic powder, the highest currently known fraction for Al<sub>2</sub>O<sub>3</sub> in VPP slurries.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"20 \",\"pages\":\"Article 100705\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266653952400169X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266653952400169X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

采用大桶光聚合(VPP)技术进行添加制造,可以灵活地生产陶瓷部件。该工艺需要由光敏粘合剂系统和陶瓷粉末组成的陶瓷浆料。为了防止在脱胶和烧结过程中出现缺陷,需要尽可能高的陶瓷颗粒含量。同时,为了确保 VPP 工艺的可加工性,又不能超过一定的粘度。这种目标冲突要求对大量的泥浆成分进行精确调整。因此,实验性泥浆开发和优化非常昂贵且耗时。因此,贝叶斯优化(一种人工智能(AI)方法)被用来加强泥浆成分的实验优化。利用这种方法,只需不到 40 个优化步骤,就能获得适用于 VPP 的氧化铝(Al2O3)浆料,其陶瓷粉含量为 65 Vol.%,这是目前已知的 VPP 浆料中 Al2O3 的最高含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of aluminum oxide slurries for additive manufacturing by Bayesian optimization
Additive manufacturing by vat photopolymerization (VPP) enables the flexible production of ceramic components. The process requires ceramic slurries consisting of a photosensitive binder system and ceramic powder. To prevent defects during debinding and sintering, the highest possible content of ceramic particles is desired. At the same time, a certain viscosity must not be exceeded to ensure the processability in the VPP process. This conflict of objectives requires a precise adjustment of the large amount of slurry constituents. Hence, an experimental slurry development and optimization is very expensive and time-consuming. Therefore, Bayesian optimization, an artificial intelligence (AI) approach, was used to enhance an experimental optimization of the slurry composition. Using this approach, it was possible to achieve in less than 40 optimization steps an aluminum oxide (Al2O3) slurry suitable for VPP with a content of 65 vol.% ceramic powder, the highest currently known fraction for Al2O3 in VPP slurries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
期刊最新文献
Pressure-assisted sintering approaches for up-converting LiYF4:Er/Yb transparent oxyfluoride glass-ceramics Development of aluminum oxide slurries for additive manufacturing by Bayesian optimization Self-propagating room temperature synthesis and structural characterization of transition metal-rare earth based compositionally complex oxides Study of the synergistic effects of bioactive glasses with Manuka honey Attack of discarded soda-lime glass with sodium aluminate for the manufacturing of sustainable geopolymer components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1