Amer Aref Said Ismail , Yuana Elly Agustin , Teck Ann Yeow , Fang Baishan , Nur Syakina Jamali , Swee Keong Yeap , Hemavathi Silvamany , Tan Peng Chee , Tan Jian Ping
{"title":"通过树脂吸附从甘油发酵液中可持续生物生产和创新性提纯 1,3-丙二醇","authors":"Amer Aref Said Ismail , Yuana Elly Agustin , Teck Ann Yeow , Fang Baishan , Nur Syakina Jamali , Swee Keong Yeap , Hemavathi Silvamany , Tan Peng Chee , Tan Jian Ping","doi":"10.1016/j.fbp.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>The study focuses on enhancing the production and purification of 1,3-Propanediol (1,3-PDO), a versatile compound used across various industries. Conventionally, 1,3-propanediol (1,3-PDO) has been derived from petroleum-based feedstocks through chemical processes, which pose significant cost and environmental concerns. This has prompted the exploration of sustainable biological production methods using microorganisms to ferment glycerol, the main by-product of palm oil transesterification in biodiesel production. However, downstream purification remains complex and inefficient. To address this, our study introduces a novel and economically viable purification strategy for 1,3-PDO derived from a semi-industrial fermentation broth. The purification process involves pre-treatment steps: centrifugation, flocculation with chitosan, decolorization with activated charcoal, and broth concentration via rotary evaporation. These steps resulted in a transparent broth with a minimal 6 % loss of 1,3-PDO. Various resin types, including Sulfonated Styrene Divinylbenzene (S-SDVB) and Styrene Divinylbenzene (SDVB) ion exchange resins in different ionic forms in addition to silica gel resin, were evaluated for their effectiveness in separating 1,3-PDO in terms of recovery and purity. A key aspect of our study is the detailed investigation of the equilibrium adsorption characteristics of SDVB and S-SDVB resins, each with different ion forms. This analysis provides insights into how resin modifications affect the separation process, aiming for higher yields and purities of 1,3-PDO. The findings revealed that the Langmuir adsorption isotherm fits experimental data. Column chromatography experiments showed SDVB resins' deficiencies in separating 1,3-PDO from other components, while silica gel resin achieved a recovery rate exceeding 96 % purity and approximately 80 % overall recovery. Notably, the Ca<sup>2+</sup> form of S-SDVB resin achieved high recovery (95–100 %) and purity (91–93 %) in both synthetic and real fermentation broths, addressing biodiesel challenges and proposing a solution for large-scale microbial 1,3-PDO production.</div></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"149 ","pages":"Pages 100-111"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable biological production and innovative purification of the 1,3-propanediol from glycerol fermentation broth via resin adsorption\",\"authors\":\"Amer Aref Said Ismail , Yuana Elly Agustin , Teck Ann Yeow , Fang Baishan , Nur Syakina Jamali , Swee Keong Yeap , Hemavathi Silvamany , Tan Peng Chee , Tan Jian Ping\",\"doi\":\"10.1016/j.fbp.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study focuses on enhancing the production and purification of 1,3-Propanediol (1,3-PDO), a versatile compound used across various industries. Conventionally, 1,3-propanediol (1,3-PDO) has been derived from petroleum-based feedstocks through chemical processes, which pose significant cost and environmental concerns. This has prompted the exploration of sustainable biological production methods using microorganisms to ferment glycerol, the main by-product of palm oil transesterification in biodiesel production. However, downstream purification remains complex and inefficient. To address this, our study introduces a novel and economically viable purification strategy for 1,3-PDO derived from a semi-industrial fermentation broth. The purification process involves pre-treatment steps: centrifugation, flocculation with chitosan, decolorization with activated charcoal, and broth concentration via rotary evaporation. These steps resulted in a transparent broth with a minimal 6 % loss of 1,3-PDO. Various resin types, including Sulfonated Styrene Divinylbenzene (S-SDVB) and Styrene Divinylbenzene (SDVB) ion exchange resins in different ionic forms in addition to silica gel resin, were evaluated for their effectiveness in separating 1,3-PDO in terms of recovery and purity. A key aspect of our study is the detailed investigation of the equilibrium adsorption characteristics of SDVB and S-SDVB resins, each with different ion forms. This analysis provides insights into how resin modifications affect the separation process, aiming for higher yields and purities of 1,3-PDO. The findings revealed that the Langmuir adsorption isotherm fits experimental data. Column chromatography experiments showed SDVB resins' deficiencies in separating 1,3-PDO from other components, while silica gel resin achieved a recovery rate exceeding 96 % purity and approximately 80 % overall recovery. Notably, the Ca<sup>2+</sup> form of S-SDVB resin achieved high recovery (95–100 %) and purity (91–93 %) in both synthetic and real fermentation broths, addressing biodiesel challenges and proposing a solution for large-scale microbial 1,3-PDO production.</div></div>\",\"PeriodicalId\":12134,\"journal\":{\"name\":\"Food and Bioproducts Processing\",\"volume\":\"149 \",\"pages\":\"Pages 100-111\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioproducts Processing\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960308524002268\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308524002268","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Sustainable biological production and innovative purification of the 1,3-propanediol from glycerol fermentation broth via resin adsorption
The study focuses on enhancing the production and purification of 1,3-Propanediol (1,3-PDO), a versatile compound used across various industries. Conventionally, 1,3-propanediol (1,3-PDO) has been derived from petroleum-based feedstocks through chemical processes, which pose significant cost and environmental concerns. This has prompted the exploration of sustainable biological production methods using microorganisms to ferment glycerol, the main by-product of palm oil transesterification in biodiesel production. However, downstream purification remains complex and inefficient. To address this, our study introduces a novel and economically viable purification strategy for 1,3-PDO derived from a semi-industrial fermentation broth. The purification process involves pre-treatment steps: centrifugation, flocculation with chitosan, decolorization with activated charcoal, and broth concentration via rotary evaporation. These steps resulted in a transparent broth with a minimal 6 % loss of 1,3-PDO. Various resin types, including Sulfonated Styrene Divinylbenzene (S-SDVB) and Styrene Divinylbenzene (SDVB) ion exchange resins in different ionic forms in addition to silica gel resin, were evaluated for their effectiveness in separating 1,3-PDO in terms of recovery and purity. A key aspect of our study is the detailed investigation of the equilibrium adsorption characteristics of SDVB and S-SDVB resins, each with different ion forms. This analysis provides insights into how resin modifications affect the separation process, aiming for higher yields and purities of 1,3-PDO. The findings revealed that the Langmuir adsorption isotherm fits experimental data. Column chromatography experiments showed SDVB resins' deficiencies in separating 1,3-PDO from other components, while silica gel resin achieved a recovery rate exceeding 96 % purity and approximately 80 % overall recovery. Notably, the Ca2+ form of S-SDVB resin achieved high recovery (95–100 %) and purity (91–93 %) in both synthetic and real fermentation broths, addressing biodiesel challenges and proposing a solution for large-scale microbial 1,3-PDO production.
期刊介绍:
Official Journal of the European Federation of Chemical Engineering:
Part C
FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering.
Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing.
The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those:
• Primarily concerned with food formulation
• That use experimental design techniques to obtain response surfaces but gain little insight from them
• That are empirical and ignore established mechanistic models, e.g., empirical drying curves
• That are primarily concerned about sensory evaluation and colour
• Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material,
• Containing only chemical analyses of biological materials.