{"title":"CAN-Verify:BDI 代理的自动分析","authors":"Mengwei Xu , Blair Archibald , Michele Sevegnani","doi":"10.1016/j.scico.2024.103233","DOIUrl":null,"url":null,"abstract":"<div><div>We present <span>CAN-Verify</span>, an automated tool for analysing BDI agents written in the Conceptual Agent Notation (<span>Can</span>) language. <span>CAN-Verify</span> includes support for syntactic error detection before agent execution, agent program interpretation (running agents), and model-checking of agent programs (analysing agents). The model checking supports verifying the correctness of agents against both generic agent requirements, such as if a task is accomplished, and user-defined requirements, such as certain beliefs eventually holding. The latter can be expressed in structured natural language, allowing the tool to be used by agent programmers without formal training in the underlying verification techniques.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"241 ","pages":"Article 103233"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAN-Verify: Automated analysis for BDI agents\",\"authors\":\"Mengwei Xu , Blair Archibald , Michele Sevegnani\",\"doi\":\"10.1016/j.scico.2024.103233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present <span>CAN-Verify</span>, an automated tool for analysing BDI agents written in the Conceptual Agent Notation (<span>Can</span>) language. <span>CAN-Verify</span> includes support for syntactic error detection before agent execution, agent program interpretation (running agents), and model-checking of agent programs (analysing agents). The model checking supports verifying the correctness of agents against both generic agent requirements, such as if a task is accomplished, and user-defined requirements, such as certain beliefs eventually holding. The latter can be expressed in structured natural language, allowing the tool to be used by agent programmers without formal training in the underlying verification techniques.</div></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"241 \",\"pages\":\"Article 103233\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642324001564\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642324001564","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
We present CAN-Verify, an automated tool for analysing BDI agents written in the Conceptual Agent Notation (Can) language. CAN-Verify includes support for syntactic error detection before agent execution, agent program interpretation (running agents), and model-checking of agent programs (analysing agents). The model checking supports verifying the correctness of agents against both generic agent requirements, such as if a task is accomplished, and user-defined requirements, such as certain beliefs eventually holding. The latter can be expressed in structured natural language, allowing the tool to be used by agent programmers without formal training in the underlying verification techniques.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.