{"title":"用上界法计算用分层土工格栅片加固的非饱和土中条形基脚的承载力","authors":"Sheng Xu, Zhen-Yu Yin","doi":"10.1016/j.geotexmem.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>A frequently overlooked aspect in previous research on bearing capacity of reinforced foundations is the prevalent unsaturated properties of soils. This paper provides an analytical framework for evaluating the bearing capacity of strip footings with single-layer and double-layer reinforcement in unsaturated soils. Four classical nonlinear expressions are used to determine the additional cohesion induced by matric suction. Solutions for the reinforcement layer undergoing tensile failure and sliding failure are provided separately. In the former case, where the bearing capacity depends on the reinforcement's tensile strength, the Prandtl mechanism is employed. In the latter case, where the bearing capacity is influenced by the characteristics of the reinforcement-soil interface, a multi-block mechanism is adopted. Additionally, sliding failure exhibits different mechanisms depending on the reinforcement's embedded depth. By comparing the results of different failure mechanisms, accurate upper bound solutions for bearing capacity are obtained. In the case of sliding failure, the optimal reinforcement depths that maximize the bearing capacity are identified for both single-layer and double-layer reinforcement. To facilitate engineering use, the optimum depths and corresponding bearing capacity factors are given in tabular form. The effectiveness of the framework is demonstrated through comparisons with previous theories, experiments, and finite element simulation results.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 405-426"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bearing capacity of strip footings in unsaturated soils reinforced with layered geogrid sheets using upper bound method\",\"authors\":\"Sheng Xu, Zhen-Yu Yin\",\"doi\":\"10.1016/j.geotexmem.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A frequently overlooked aspect in previous research on bearing capacity of reinforced foundations is the prevalent unsaturated properties of soils. This paper provides an analytical framework for evaluating the bearing capacity of strip footings with single-layer and double-layer reinforcement in unsaturated soils. Four classical nonlinear expressions are used to determine the additional cohesion induced by matric suction. Solutions for the reinforcement layer undergoing tensile failure and sliding failure are provided separately. In the former case, where the bearing capacity depends on the reinforcement's tensile strength, the Prandtl mechanism is employed. In the latter case, where the bearing capacity is influenced by the characteristics of the reinforcement-soil interface, a multi-block mechanism is adopted. Additionally, sliding failure exhibits different mechanisms depending on the reinforcement's embedded depth. By comparing the results of different failure mechanisms, accurate upper bound solutions for bearing capacity are obtained. In the case of sliding failure, the optimal reinforcement depths that maximize the bearing capacity are identified for both single-layer and double-layer reinforcement. To facilitate engineering use, the optimum depths and corresponding bearing capacity factors are given in tabular form. The effectiveness of the framework is demonstrated through comparisons with previous theories, experiments, and finite element simulation results.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 1\",\"pages\":\"Pages 405-426\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424001316\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001316","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Bearing capacity of strip footings in unsaturated soils reinforced with layered geogrid sheets using upper bound method
A frequently overlooked aspect in previous research on bearing capacity of reinforced foundations is the prevalent unsaturated properties of soils. This paper provides an analytical framework for evaluating the bearing capacity of strip footings with single-layer and double-layer reinforcement in unsaturated soils. Four classical nonlinear expressions are used to determine the additional cohesion induced by matric suction. Solutions for the reinforcement layer undergoing tensile failure and sliding failure are provided separately. In the former case, where the bearing capacity depends on the reinforcement's tensile strength, the Prandtl mechanism is employed. In the latter case, where the bearing capacity is influenced by the characteristics of the reinforcement-soil interface, a multi-block mechanism is adopted. Additionally, sliding failure exhibits different mechanisms depending on the reinforcement's embedded depth. By comparing the results of different failure mechanisms, accurate upper bound solutions for bearing capacity are obtained. In the case of sliding failure, the optimal reinforcement depths that maximize the bearing capacity are identified for both single-layer and double-layer reinforcement. To facilitate engineering use, the optimum depths and corresponding bearing capacity factors are given in tabular form. The effectiveness of the framework is demonstrated through comparisons with previous theories, experiments, and finite element simulation results.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.