配方壳聚糖微球重塑了饮食诱导的 2 型糖尿病大鼠肠道微生物群和肝脏 miRNA 的改变

IF 2.4 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Carbohydrate Research Pub Date : 2024-11-13 DOI:10.1016/j.carres.2024.109301
Sunny Kumar, Zeel Bhatia, Sriram Seshadri
{"title":"配方壳聚糖微球重塑了饮食诱导的 2 型糖尿病大鼠肠道微生物群和肝脏 miRNA 的改变","authors":"Sunny Kumar,&nbsp;Zeel Bhatia,&nbsp;Sriram Seshadri","doi":"10.1016/j.carres.2024.109301","DOIUrl":null,"url":null,"abstract":"<div><div>Chitosan was formulated into a microsphere and comprehensively characterized and evaluated for its anti-inflammatory potential and anti-diabetic properties against the high sugar fat diet-induced diabetic animals. The diabetic model was induced through feeding with a high-sugar fat diet. Metformin, a standard antidiabetic drug, and CMS (chitosan microspheres) were administered orally for 90 days as reversal strategies. Upon completion of the study, the following parameters, such as serum biochemistry, cytokine analysis, tissue histology, liver miRNA sequencing, and Shotgun metagenomics studies from stool samples, were performed. SEM images of the microsphere indicated a smooth morphology, while FTIR and DSC respectively, confirmed the presence of functional groups of chitosan and the thermal stability of the formulation. Following HSFD induction, all the parameters analyzed were altered compared to the control group. In both reversal groups, serum biochemical parameters were restored, which was at par with the control. A significant increase in the anti-inflammatory cytokine IL-10, and a remarkable reduction in TNF-α and MCP-1 inflammatory cytokines were observed in both reversal groups. Tissue histology indicated improvements in low-grade inflammation, induced in the diabetic group. miR-203 was upregulated in the CMS-treated group, while miR-103 was downregulated. The study further delved into the impact on gut microbiota and KEGG. Major phyla i.e., <em>Bacteroidetes</em>, <em>Cyanobacteria</em>, <em>Firmicutes</em>, <em>Proteobacteria</em>, and <em>Verrucomicrobia</em> showed restoration, while upregulation of DNA polymerase zeta in T2D showed reversal after the treatment. The formulation showed reversal at par with metformin and also confirms its anti-diabetic and anti-inflammatory activities of CMS, with microfloral and miR regulatory functions.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"547 ","pages":"Article 109301"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulated chitosan microspheres remodelled the altered gut microbiota and liver miRNA in diet-induced Type-2 diabetic rats\",\"authors\":\"Sunny Kumar,&nbsp;Zeel Bhatia,&nbsp;Sriram Seshadri\",\"doi\":\"10.1016/j.carres.2024.109301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chitosan was formulated into a microsphere and comprehensively characterized and evaluated for its anti-inflammatory potential and anti-diabetic properties against the high sugar fat diet-induced diabetic animals. The diabetic model was induced through feeding with a high-sugar fat diet. Metformin, a standard antidiabetic drug, and CMS (chitosan microspheres) were administered orally for 90 days as reversal strategies. Upon completion of the study, the following parameters, such as serum biochemistry, cytokine analysis, tissue histology, liver miRNA sequencing, and Shotgun metagenomics studies from stool samples, were performed. SEM images of the microsphere indicated a smooth morphology, while FTIR and DSC respectively, confirmed the presence of functional groups of chitosan and the thermal stability of the formulation. Following HSFD induction, all the parameters analyzed were altered compared to the control group. In both reversal groups, serum biochemical parameters were restored, which was at par with the control. A significant increase in the anti-inflammatory cytokine IL-10, and a remarkable reduction in TNF-α and MCP-1 inflammatory cytokines were observed in both reversal groups. Tissue histology indicated improvements in low-grade inflammation, induced in the diabetic group. miR-203 was upregulated in the CMS-treated group, while miR-103 was downregulated. The study further delved into the impact on gut microbiota and KEGG. Major phyla i.e., <em>Bacteroidetes</em>, <em>Cyanobacteria</em>, <em>Firmicutes</em>, <em>Proteobacteria</em>, and <em>Verrucomicrobia</em> showed restoration, while upregulation of DNA polymerase zeta in T2D showed reversal after the treatment. The formulation showed reversal at par with metformin and also confirms its anti-diabetic and anti-inflammatory activities of CMS, with microfloral and miR regulatory functions.</div></div>\",\"PeriodicalId\":9415,\"journal\":{\"name\":\"Carbohydrate Research\",\"volume\":\"547 \",\"pages\":\"Article 109301\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008621524002805\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524002805","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

将壳聚糖配制成微球,并对其抗炎潜力和抗糖尿病特性进行了全面的表征和评估,以对抗高糖高脂饮食诱导的糖尿病动物。糖尿病模型是通过喂食高糖高脂饮食诱发的。作为逆转策略,二甲双胍(一种标准抗糖尿病药物)和 CMS(壳聚糖微球)被口服 90 天。研究结束后,对粪便样本进行了血清生化、细胞因子分析、组织组织学、肝脏 miRNA 测序和 Shotgun 元基因组学研究。微球的扫描电子显微镜图像显示其形态光滑,而傅立叶变换红外光谱(FTIR)和电热恒温(DSC)则分别证实了壳聚糖官能团的存在和制剂的热稳定性。诱导 HSFD 后,与对照组相比,所有分析参数都发生了变化。在两个逆转组中,血清生化指标都得到了恢复,与对照组持平。在两个逆转组中,都观察到抗炎细胞因子 IL-10 明显增加,TNF-α 和 MCP-1 炎症细胞因子明显减少。组织组织学显示,糖尿病组诱发的低度炎症有所改善。CMS 治疗组的 miR-203 上调,而 miR-103 下调。研究进一步探讨了对肠道微生物群和 KEGG 的影响。治疗后,主要菌门(即类杆菌门、蓝藻门、固形菌门、蛋白菌门和疣状微生物门)得到恢复,而 T2D 中 DNA 聚合酶 zeta 的上调则出现逆转。该制剂的逆转效果与二甲双胍相当,还证实了 CMS 的抗糖尿病和抗炎活性,以及微花和 miR 调节功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formulated chitosan microspheres remodelled the altered gut microbiota and liver miRNA in diet-induced Type-2 diabetic rats
Chitosan was formulated into a microsphere and comprehensively characterized and evaluated for its anti-inflammatory potential and anti-diabetic properties against the high sugar fat diet-induced diabetic animals. The diabetic model was induced through feeding with a high-sugar fat diet. Metformin, a standard antidiabetic drug, and CMS (chitosan microspheres) were administered orally for 90 days as reversal strategies. Upon completion of the study, the following parameters, such as serum biochemistry, cytokine analysis, tissue histology, liver miRNA sequencing, and Shotgun metagenomics studies from stool samples, were performed. SEM images of the microsphere indicated a smooth morphology, while FTIR and DSC respectively, confirmed the presence of functional groups of chitosan and the thermal stability of the formulation. Following HSFD induction, all the parameters analyzed were altered compared to the control group. In both reversal groups, serum biochemical parameters were restored, which was at par with the control. A significant increase in the anti-inflammatory cytokine IL-10, and a remarkable reduction in TNF-α and MCP-1 inflammatory cytokines were observed in both reversal groups. Tissue histology indicated improvements in low-grade inflammation, induced in the diabetic group. miR-203 was upregulated in the CMS-treated group, while miR-103 was downregulated. The study further delved into the impact on gut microbiota and KEGG. Major phyla i.e., Bacteroidetes, Cyanobacteria, Firmicutes, Proteobacteria, and Verrucomicrobia showed restoration, while upregulation of DNA polymerase zeta in T2D showed reversal after the treatment. The formulation showed reversal at par with metformin and also confirms its anti-diabetic and anti-inflammatory activities of CMS, with microfloral and miR regulatory functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Research
Carbohydrate Research 化学-生化与分子生物学
CiteScore
5.00
自引率
3.20%
发文量
183
审稿时长
3.6 weeks
期刊介绍: Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects. Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence. Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".
期刊最新文献
A review on the biological activities and the nutraceutical potential of chitooligosaccharides. Recent trends in the separation and analysis of chitooligomers. Synthesis and antioxidant evaluation of coumarin-functionalised chitosan: A potent, non-toxic free radical scavenging compound. Analysing the apoptotic potential of green synthesized Nyctanthes arbor-tristis chitosan nanoparticles in MDA-MB-231 and SKOV3 cell lines. Highly efficient esterification of waxy maize starch in choline chloride/acetic acid acidic deep eutectic solvent system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1