利用田口方法在壳聚糖衍生物上去除锂

Peter Osei Boamah , Jacqueline Onumah , Tayari Salifu , John Hendrick Essel , Benjamin Apam
{"title":"利用田口方法在壳聚糖衍生物上去除锂","authors":"Peter Osei Boamah ,&nbsp;Jacqueline Onumah ,&nbsp;Tayari Salifu ,&nbsp;John Hendrick Essel ,&nbsp;Benjamin Apam","doi":"10.1016/j.carpta.2024.100611","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to remove lithium from a water-based mixture using a low molecular weight chitosan derivative (LMWCHT-LA-GLA). Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and Nuclear Magnetic Resonance (NMR) spectroscopy were used to assess the sorbent. Lithium sorption capabilities were enhanced by LMWCHT-LA-GLA's functional groups OH, NH<sub>2</sub>, and COOH. The initial concentration, sorbent dosage and pH had the biggest effects on sorption efficiency. At the ideal initial lithium content of 1 mg/L, sorbent quantity of 0.10 g and solution pH of 6, the percentage of removal was 62.75 %. The analysis of variance (ANOVA) revealed that the initial lithium concentration contributed the largest percentage (94.10 %) to the removal efficiency. Utilizing the Freundlich, Temkin and Langmuir sorption models, the experimental data were examined. The experimental data and the Langmuir isotherm agreed fairly well with a maximum sorption capacity of 7.00 mg/g. Pseudo-first- and pseudo-second-order kinetic models were used to analyze the kinetic data obtained at the optimal initial concentration. The pseudo-second-order model provided a good fit to the experimental data. Thermodynamic studies were used to determine the kind of lithium sorption. Overall results suggested that LMWCHT-LA-GLA is a promising sorbent for the removal of lithium from aqueous solution.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"8 ","pages":"Article 100611"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of Lithium onto chitosan derivative using Taguchi method\",\"authors\":\"Peter Osei Boamah ,&nbsp;Jacqueline Onumah ,&nbsp;Tayari Salifu ,&nbsp;John Hendrick Essel ,&nbsp;Benjamin Apam\",\"doi\":\"10.1016/j.carpta.2024.100611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to remove lithium from a water-based mixture using a low molecular weight chitosan derivative (LMWCHT-LA-GLA). Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and Nuclear Magnetic Resonance (NMR) spectroscopy were used to assess the sorbent. Lithium sorption capabilities were enhanced by LMWCHT-LA-GLA's functional groups OH, NH<sub>2</sub>, and COOH. The initial concentration, sorbent dosage and pH had the biggest effects on sorption efficiency. At the ideal initial lithium content of 1 mg/L, sorbent quantity of 0.10 g and solution pH of 6, the percentage of removal was 62.75 %. The analysis of variance (ANOVA) revealed that the initial lithium concentration contributed the largest percentage (94.10 %) to the removal efficiency. Utilizing the Freundlich, Temkin and Langmuir sorption models, the experimental data were examined. The experimental data and the Langmuir isotherm agreed fairly well with a maximum sorption capacity of 7.00 mg/g. Pseudo-first- and pseudo-second-order kinetic models were used to analyze the kinetic data obtained at the optimal initial concentration. The pseudo-second-order model provided a good fit to the experimental data. Thermodynamic studies were used to determine the kind of lithium sorption. Overall results suggested that LMWCHT-LA-GLA is a promising sorbent for the removal of lithium from aqueous solution.</div></div>\",\"PeriodicalId\":100213,\"journal\":{\"name\":\"Carbohydrate Polymer Technologies and Applications\",\"volume\":\"8 \",\"pages\":\"Article 100611\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymer Technologies and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666893924001919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924001919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用低分子量壳聚糖衍生物(LMWCHT-LA-GLA)去除水基混合物中的锂。傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和核磁共振(NMR)光谱用于评估吸附剂。LMWCHT-LA-GLA的官能团OH、NH2和COOH增强了锂的吸附能力。初始浓度、吸附剂用量和 pH 值对吸附效率的影响最大。当理想的初始锂含量为 1 mg/L、吸附剂用量为 0.10 g、溶液 pH 值为 6 时,锂的去除率为 62.75%。方差分析(ANOVA)显示,初始锂浓度对去除率的影响最大(94.10%)。利用 Freundlich、Temkin 和 Langmuir 吸附模型对实验数据进行了检验。实验数据与 Langmuir 等温线相当吻合,最大吸附容量为 7.00 毫克/克。使用伪一阶和伪二阶动力学模型分析了在最佳初始浓度下获得的动力学数据。伪二阶模型与实验数据拟合良好。热力学研究用于确定锂的吸附类型。总体结果表明,LMWCHT-LA-GLA 是一种很有前途的从水溶液中去除锂的吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removal of Lithium onto chitosan derivative using Taguchi method
This study aimed to remove lithium from a water-based mixture using a low molecular weight chitosan derivative (LMWCHT-LA-GLA). Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and Nuclear Magnetic Resonance (NMR) spectroscopy were used to assess the sorbent. Lithium sorption capabilities were enhanced by LMWCHT-LA-GLA's functional groups OH, NH2, and COOH. The initial concentration, sorbent dosage and pH had the biggest effects on sorption efficiency. At the ideal initial lithium content of 1 mg/L, sorbent quantity of 0.10 g and solution pH of 6, the percentage of removal was 62.75 %. The analysis of variance (ANOVA) revealed that the initial lithium concentration contributed the largest percentage (94.10 %) to the removal efficiency. Utilizing the Freundlich, Temkin and Langmuir sorption models, the experimental data were examined. The experimental data and the Langmuir isotherm agreed fairly well with a maximum sorption capacity of 7.00 mg/g. Pseudo-first- and pseudo-second-order kinetic models were used to analyze the kinetic data obtained at the optimal initial concentration. The pseudo-second-order model provided a good fit to the experimental data. Thermodynamic studies were used to determine the kind of lithium sorption. Overall results suggested that LMWCHT-LA-GLA is a promising sorbent for the removal of lithium from aqueous solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Spray drying of saffron extract-loaded coacervates by carboxymethyl cellulose/maltodextrin/saffron petal anthocyanins In situ delivery of synthetic preimplantation factor using aldehyde-modified hyaluronic acid hydrogel with immobilized complexes of chondroitin sulfate derivatives Correlation between gastrointestinal index (GI) and the structure and physicochemical properties of rice starch from different varieties and colors A thermo-responsive chitosan-based injectable hydrogel for delivery of curcumin-loaded polycaprolactone microspheres to articular cartilage: in-vitro and in-vivo assessments Encapsulation of albumin from snakehead fish (Channa striata) with porous starch from arrowroot (Maranta arundinacea)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1