高施密特数下标量输运的欧拉-拉格朗日分解与自适应粒子生成和清除

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-11-17 DOI:10.1016/j.compfluid.2024.106490
A. Karimi Noughabi , M. Leer , I. Wlokas , A. Kempf
{"title":"高施密特数下标量输运的欧拉-拉格朗日分解与自适应粒子生成和清除","authors":"A. Karimi Noughabi ,&nbsp;M. Leer ,&nbsp;I. Wlokas ,&nbsp;A. Kempf","doi":"10.1016/j.compfluid.2024.106490","DOIUrl":null,"url":null,"abstract":"<div><div>At high Schmidt or Prandtl numbers, scalar length scales are smaller than velocity scales, so they can only be resolved if a much finer grid is used and if numerical diffusion is managed carefully. This paper presents a numerical approach based on an Euler-Lagrangian decomposition method to prevent the numerical diffusion or dispersion of the scalar fields and to reduce the computational cost of flow simulations at high Schmidt numbers. This method decomposes the scalar field to the sum of i) a low-wavenumber component transported in the Eulerian framework using a conventional finite volume scheme with a numerical resolution according to the Kolmogorov scale and ii) a high-wavenumber component, described by Lagrangian particles to reconstruct the steep gradients in the scalar field. Depending on the local flow state, gradients can get steeper or flatter, requiring the transfer of information from the low- to the high-wavenumber fields and vice versa, which must be represented by particle creation or removal. New approaches are presented and tested for particle generation and removal on a 2D single vortex and a turbulent mixing layer across a Schmidt number range from 10 to 1000. We analyze scalar contours and conduct statistical assessments using probability density functions (PDF), mean squared error (MSE), and the structural similarity index measure (SSIM) for varying particle removal thresholds. The results confirm that, compared to the Eulerian description, the new approach can resolve smaller structures in the scalar field. Furthermore, particle removal not only reduces the number of particles without compromising accuracy, but it also, perhaps counter-intuitively, increases accuracy, where the low particle density would create excessive noise.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"287 ","pages":"Article 106490"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Eulerian-Lagrangian decomposition for scalar transport at high schmidt number with adaptive particle creation and removal\",\"authors\":\"A. Karimi Noughabi ,&nbsp;M. Leer ,&nbsp;I. Wlokas ,&nbsp;A. Kempf\",\"doi\":\"10.1016/j.compfluid.2024.106490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>At high Schmidt or Prandtl numbers, scalar length scales are smaller than velocity scales, so they can only be resolved if a much finer grid is used and if numerical diffusion is managed carefully. This paper presents a numerical approach based on an Euler-Lagrangian decomposition method to prevent the numerical diffusion or dispersion of the scalar fields and to reduce the computational cost of flow simulations at high Schmidt numbers. This method decomposes the scalar field to the sum of i) a low-wavenumber component transported in the Eulerian framework using a conventional finite volume scheme with a numerical resolution according to the Kolmogorov scale and ii) a high-wavenumber component, described by Lagrangian particles to reconstruct the steep gradients in the scalar field. Depending on the local flow state, gradients can get steeper or flatter, requiring the transfer of information from the low- to the high-wavenumber fields and vice versa, which must be represented by particle creation or removal. New approaches are presented and tested for particle generation and removal on a 2D single vortex and a turbulent mixing layer across a Schmidt number range from 10 to 1000. We analyze scalar contours and conduct statistical assessments using probability density functions (PDF), mean squared error (MSE), and the structural similarity index measure (SSIM) for varying particle removal thresholds. The results confirm that, compared to the Eulerian description, the new approach can resolve smaller structures in the scalar field. Furthermore, particle removal not only reduces the number of particles without compromising accuracy, but it also, perhaps counter-intuitively, increases accuracy, where the low particle density would create excessive noise.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"287 \",\"pages\":\"Article 106490\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024003219\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003219","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在高施密特数或普朗特数下,标量长度尺度小于速度尺度,因此只有使用更精细的网格并小心控制数值扩散,才能解决这些问题。本文提出了一种基于欧拉-拉格朗日分解法的数值方法,以防止标量场的数值扩散或弥散,并降低高施密特数流动模拟的计算成本。该方法将标量场分解为以下两个部分的总和:(i) 在欧拉框架下使用传统有限体积方案传输的低波数分量,其数值分辨率根据科尔莫哥罗夫尺度确定;(ii) 由拉格朗日粒子描述的高波数分量,以重建标量场中的陡峭梯度。根据当地的流动状态,梯度可能会变得更陡峭或更平坦,这就需要将信息从低波数场转移到高波数场,反之亦然,这必须通过粒子的产生或移除来体现。我们提出了新的方法,并对二维单涡旋和湍流混合层在施密特数 10 到 1000 范围内的粒子生成和去除进行了测试。我们分析了标量等值线,并使用概率密度函数(PDF)、均方误差(MSE)和结构相似性指数(SSIM)对不同的粒子去除阈值进行了统计评估。结果证实,与欧拉描述相比,新方法可以解析标量场中的较小结构。此外,粒子去除不仅在不影响精度的情况下减少了粒子数量,而且可能与直觉相反地提高了精度,因为低粒子密度会产生过多噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Eulerian-Lagrangian decomposition for scalar transport at high schmidt number with adaptive particle creation and removal
At high Schmidt or Prandtl numbers, scalar length scales are smaller than velocity scales, so they can only be resolved if a much finer grid is used and if numerical diffusion is managed carefully. This paper presents a numerical approach based on an Euler-Lagrangian decomposition method to prevent the numerical diffusion or dispersion of the scalar fields and to reduce the computational cost of flow simulations at high Schmidt numbers. This method decomposes the scalar field to the sum of i) a low-wavenumber component transported in the Eulerian framework using a conventional finite volume scheme with a numerical resolution according to the Kolmogorov scale and ii) a high-wavenumber component, described by Lagrangian particles to reconstruct the steep gradients in the scalar field. Depending on the local flow state, gradients can get steeper or flatter, requiring the transfer of information from the low- to the high-wavenumber fields and vice versa, which must be represented by particle creation or removal. New approaches are presented and tested for particle generation and removal on a 2D single vortex and a turbulent mixing layer across a Schmidt number range from 10 to 1000. We analyze scalar contours and conduct statistical assessments using probability density functions (PDF), mean squared error (MSE), and the structural similarity index measure (SSIM) for varying particle removal thresholds. The results confirm that, compared to the Eulerian description, the new approach can resolve smaller structures in the scalar field. Furthermore, particle removal not only reduces the number of particles without compromising accuracy, but it also, perhaps counter-intuitively, increases accuracy, where the low particle density would create excessive noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Blade-resolved and actuator line simulations of rotor wakes SPH simulations of non-isothermal viscoplastic free-surface flows incorporating Herschel-Bulkley-Papanastasiou model High-order gas kinetic flux solver with TENO-THINC scheme for compressible flows An Eulerian-Lagrangian decomposition for scalar transport at high schmidt number with adaptive particle creation and removal A new sharing function for the common-weights WENO reconstruction of the Euler equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1