Ping Zhang , Yeran Gao , Xiaomin Jiang , Yan Yu , Youqiang Wang
{"title":"基于喷水强化的钛铝复合板表面完整性和裂纹扩展机理研究","authors":"Ping Zhang , Yeran Gao , Xiaomin Jiang , Yan Yu , Youqiang Wang","doi":"10.1016/j.vacuum.2024.113818","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the mechanisms through which water jet (WJ) enhancement affects surface integrity and crack propagation in Ti/Al composite plates. Finite element models for both WJ enhancement and crack propagation were developed using ABAQUS, complemented by experiments analyzing the influence of different jet velocities on surface integrity parameters, such as residual stress and surface roughness. These parameters were then examined for their effects on the stress intensity factor (SIF), fatigue crack propagation rate (FCP), and crack propagation path.The results demonstrated a positive relationship between jet velocity and both surface roughness and maximum residual compressive stress in specimens treated with WJ enhancement. Specifically, as jet velocity increased from 300 mm/s to 350 mm/s, surface roughness rose approximately 4.2-fold to around 0.95813 μm, while maximum residual compressive stress increased from 1109.9 MPa to 1472.5 MPa. The uniform distribution of residual compressive stress contributed significantly to the reduction in the stress intensity factor.Additionally, the crack propagation rate was inversely correlated with jet velocity. The residual compressive stress induced by higher jet velocities effectively slowed crack propagation. The theoretical interpretation of residual compressive stress as an equivalent damping layer further validated the effectiveness of WJ enhancement in reducing crack propagation in Ti/Al composites.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"232 ","pages":"Article 113818"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on surface integrity and crack propagation mechanism of Ti/Al composite plates enhanced based on water jet peening\",\"authors\":\"Ping Zhang , Yeran Gao , Xiaomin Jiang , Yan Yu , Youqiang Wang\",\"doi\":\"10.1016/j.vacuum.2024.113818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the mechanisms through which water jet (WJ) enhancement affects surface integrity and crack propagation in Ti/Al composite plates. Finite element models for both WJ enhancement and crack propagation were developed using ABAQUS, complemented by experiments analyzing the influence of different jet velocities on surface integrity parameters, such as residual stress and surface roughness. These parameters were then examined for their effects on the stress intensity factor (SIF), fatigue crack propagation rate (FCP), and crack propagation path.The results demonstrated a positive relationship between jet velocity and both surface roughness and maximum residual compressive stress in specimens treated with WJ enhancement. Specifically, as jet velocity increased from 300 mm/s to 350 mm/s, surface roughness rose approximately 4.2-fold to around 0.95813 μm, while maximum residual compressive stress increased from 1109.9 MPa to 1472.5 MPa. The uniform distribution of residual compressive stress contributed significantly to the reduction in the stress intensity factor.Additionally, the crack propagation rate was inversely correlated with jet velocity. The residual compressive stress induced by higher jet velocities effectively slowed crack propagation. The theoretical interpretation of residual compressive stress as an equivalent damping layer further validated the effectiveness of WJ enhancement in reducing crack propagation in Ti/Al composites.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"232 \",\"pages\":\"Article 113818\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24008649\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008649","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on surface integrity and crack propagation mechanism of Ti/Al composite plates enhanced based on water jet peening
This study investigates the mechanisms through which water jet (WJ) enhancement affects surface integrity and crack propagation in Ti/Al composite plates. Finite element models for both WJ enhancement and crack propagation were developed using ABAQUS, complemented by experiments analyzing the influence of different jet velocities on surface integrity parameters, such as residual stress and surface roughness. These parameters were then examined for their effects on the stress intensity factor (SIF), fatigue crack propagation rate (FCP), and crack propagation path.The results demonstrated a positive relationship between jet velocity and both surface roughness and maximum residual compressive stress in specimens treated with WJ enhancement. Specifically, as jet velocity increased from 300 mm/s to 350 mm/s, surface roughness rose approximately 4.2-fold to around 0.95813 μm, while maximum residual compressive stress increased from 1109.9 MPa to 1472.5 MPa. The uniform distribution of residual compressive stress contributed significantly to the reduction in the stress intensity factor.Additionally, the crack propagation rate was inversely correlated with jet velocity. The residual compressive stress induced by higher jet velocities effectively slowed crack propagation. The theoretical interpretation of residual compressive stress as an equivalent damping layer further validated the effectiveness of WJ enhancement in reducing crack propagation in Ti/Al composites.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.