基于微计算机断层扫描现实口袋分布的铝结块模型

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Aerospace Science and Technology Pub Date : 2024-11-17 DOI:10.1016/j.ast.2024.109727
Yanfeng Jiang, Zilong Zhao, Zhan Wen, Wenchao Zhang, Songchen Yue, Peijin Liu, Wen Ao
{"title":"基于微计算机断层扫描现实口袋分布的铝结块模型","authors":"Yanfeng Jiang,&nbsp;Zilong Zhao,&nbsp;Zhan Wen,&nbsp;Wenchao Zhang,&nbsp;Songchen Yue,&nbsp;Peijin Liu,&nbsp;Wen Ao","doi":"10.1016/j.ast.2024.109727","DOIUrl":null,"url":null,"abstract":"<div><div>The condensed combustion products (CCPs) resulted from aluminum agglomeration significantly affect the operation and safety of solid rocket motor, so it is essential to create a precise agglomeration model to predict the size of the CCPs of aluminized solid propellant. To accomplish this, high-precision microcomputed tomography (micro-CT) scanning was employed to obtain the quasi-three-dimensional structure of the propellant. The distribution of the ammonium perchlorate (AP) pockets was recognized via artificial intelligence (AI) method. The results revealed that the pocket size was mainly influenced by the AP grade. As the fraction of the coarse AP fraction declined from 43.1 % to 23.1 %, the average pocket diameter reduced from 388.91 to 68.23 μm. Size distribution predictions were subsequently performed for the agglomerations based on the pocket model theory. The equation relationship between agglomeration coefficient and propellant formulation was presented and corrected through mathematical fitting. The proposed agglomeration model was validated using the CCPs collection experiments of six aluminized propellants at 7 MPa. The agglomeration model produced an average particle size prediction error of &lt;9.8 %, and the goodness of fit of the agglomerate distribution was &gt;0.85. Subsequent analysis indicated that the agglomerate size mainly depended on the percentage of coarse AP, the burn rate, and the size distribution of raw aluminum particles. The present model is expected to offer a new way to achieve the accurate prediction of solid propellant agglomeration behaviors.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109727"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An aluminum agglomeration model based on realistic pocket distribution via microcomputed tomography\",\"authors\":\"Yanfeng Jiang,&nbsp;Zilong Zhao,&nbsp;Zhan Wen,&nbsp;Wenchao Zhang,&nbsp;Songchen Yue,&nbsp;Peijin Liu,&nbsp;Wen Ao\",\"doi\":\"10.1016/j.ast.2024.109727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The condensed combustion products (CCPs) resulted from aluminum agglomeration significantly affect the operation and safety of solid rocket motor, so it is essential to create a precise agglomeration model to predict the size of the CCPs of aluminized solid propellant. To accomplish this, high-precision microcomputed tomography (micro-CT) scanning was employed to obtain the quasi-three-dimensional structure of the propellant. The distribution of the ammonium perchlorate (AP) pockets was recognized via artificial intelligence (AI) method. The results revealed that the pocket size was mainly influenced by the AP grade. As the fraction of the coarse AP fraction declined from 43.1 % to 23.1 %, the average pocket diameter reduced from 388.91 to 68.23 μm. Size distribution predictions were subsequently performed for the agglomerations based on the pocket model theory. The equation relationship between agglomeration coefficient and propellant formulation was presented and corrected through mathematical fitting. The proposed agglomeration model was validated using the CCPs collection experiments of six aluminized propellants at 7 MPa. The agglomeration model produced an average particle size prediction error of &lt;9.8 %, and the goodness of fit of the agglomerate distribution was &gt;0.85. Subsequent analysis indicated that the agglomerate size mainly depended on the percentage of coarse AP, the burn rate, and the size distribution of raw aluminum particles. The present model is expected to offer a new way to achieve the accurate prediction of solid propellant agglomeration behaviors.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109727\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824008563\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008563","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

铝团聚产生的凝结燃烧产物(CCPs)会严重影响固体火箭发动机的运行和安全,因此必须建立精确的团聚模型来预测铝化固体推进剂 CCPs 的大小。为此,我们采用了高精度微计算机断层扫描(micro-CT)技术来获取推进剂的准三维结构。通过人工智能(AI)方法识别了高氯酸铵(AP)口袋的分布。结果表明,口袋大小主要受高氯酸铵等级的影响。随着粗粒 AP 的比例从 43.1% 降至 23.1%,口袋的平均直径从 388.91 μm 降至 68.23 μm。随后,根据口袋模型理论对团聚体的粒度分布进行了预测。提出了聚结系数与推进剂配方之间的方程关系,并通过数学拟合进行了修正。利用六种铝化推进剂在 7 兆帕下的 CCPs 收集实验,对提出的聚结模型进行了验证。结块模型产生的平均粒度预测误差为 9.8%,结块分布的拟合度为 0.85。随后的分析表明,结块粒度主要取决于粗 AP 的百分比、燃烧速率和原铝颗粒的粒度分布。本模型有望为实现固体推进剂团聚行为的精确预测提供一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An aluminum agglomeration model based on realistic pocket distribution via microcomputed tomography
The condensed combustion products (CCPs) resulted from aluminum agglomeration significantly affect the operation and safety of solid rocket motor, so it is essential to create a precise agglomeration model to predict the size of the CCPs of aluminized solid propellant. To accomplish this, high-precision microcomputed tomography (micro-CT) scanning was employed to obtain the quasi-three-dimensional structure of the propellant. The distribution of the ammonium perchlorate (AP) pockets was recognized via artificial intelligence (AI) method. The results revealed that the pocket size was mainly influenced by the AP grade. As the fraction of the coarse AP fraction declined from 43.1 % to 23.1 %, the average pocket diameter reduced from 388.91 to 68.23 μm. Size distribution predictions were subsequently performed for the agglomerations based on the pocket model theory. The equation relationship between agglomeration coefficient and propellant formulation was presented and corrected through mathematical fitting. The proposed agglomeration model was validated using the CCPs collection experiments of six aluminized propellants at 7 MPa. The agglomeration model produced an average particle size prediction error of <9.8 %, and the goodness of fit of the agglomerate distribution was >0.85. Subsequent analysis indicated that the agglomerate size mainly depended on the percentage of coarse AP, the burn rate, and the size distribution of raw aluminum particles. The present model is expected to offer a new way to achieve the accurate prediction of solid propellant agglomeration behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
期刊最新文献
A preliminary investigation on a novel vortex-controlled flameholder for aircraft engine combustor Genetic programming method for satellite optimization design with quantification of multi-granularity model uncertainty Prediction of aerodynamic coefficients for multi-swept delta wings via a hybrid neural network Robust optimization design of a blended wing-body drone considering influence of propulsion system Autonomous numerical predictor-corrector guidance for human Mars landing missions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1