P. Dani , M. Tuchen , B.E. Meli , J. Franz , J. Knoch
{"title":"PECVD 氮化硅薄膜在 MEMS 传感器空腔中释放氢气","authors":"P. Dani , M. Tuchen , B.E. Meli , J. Franz , J. Knoch","doi":"10.1016/j.mne.2024.100291","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we investigate the release of hydrogen gas from PECVD silicon nitride thin films in the cavities of MEMS based inertial sensors. Firstly, material characterization is conducted on two types of PECVD silicon nitride thin films to study the release of hydrogen gas with analytical methods. The release of hydrogen gas from these materials in encapsulated cavities of MEMS sensors, and its influence on the cavity pressure is also investigated experimentally with the help of functional microchips of MEMS based inertial sensors. Based on our findings and reports from other works, we propose steps by which change in the cavity pressure of the investigated microchip occurs over its different fabrication processes. We suggest that hydrogen gas is released form PECVD silicon nitride thin films at high temperatures during wafer bonding, which can then diffuse in cavities at low pressure over the lifetime of the sensor.</div></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"25 ","pages":"Article 100291"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Release of hydrogen gas from PECVD silicon nitride thin films in cavities of MEMS sensors\",\"authors\":\"P. Dani , M. Tuchen , B.E. Meli , J. Franz , J. Knoch\",\"doi\":\"10.1016/j.mne.2024.100291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work we investigate the release of hydrogen gas from PECVD silicon nitride thin films in the cavities of MEMS based inertial sensors. Firstly, material characterization is conducted on two types of PECVD silicon nitride thin films to study the release of hydrogen gas with analytical methods. The release of hydrogen gas from these materials in encapsulated cavities of MEMS sensors, and its influence on the cavity pressure is also investigated experimentally with the help of functional microchips of MEMS based inertial sensors. Based on our findings and reports from other works, we propose steps by which change in the cavity pressure of the investigated microchip occurs over its different fabrication processes. We suggest that hydrogen gas is released form PECVD silicon nitride thin films at high temperatures during wafer bonding, which can then diffuse in cavities at low pressure over the lifetime of the sensor.</div></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"25 \",\"pages\":\"Article 100291\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Release of hydrogen gas from PECVD silicon nitride thin films in cavities of MEMS sensors
In this work we investigate the release of hydrogen gas from PECVD silicon nitride thin films in the cavities of MEMS based inertial sensors. Firstly, material characterization is conducted on two types of PECVD silicon nitride thin films to study the release of hydrogen gas with analytical methods. The release of hydrogen gas from these materials in encapsulated cavities of MEMS sensors, and its influence on the cavity pressure is also investigated experimentally with the help of functional microchips of MEMS based inertial sensors. Based on our findings and reports from other works, we propose steps by which change in the cavity pressure of the investigated microchip occurs over its different fabrication processes. We suggest that hydrogen gas is released form PECVD silicon nitride thin films at high temperatures during wafer bonding, which can then diffuse in cavities at low pressure over the lifetime of the sensor.