Adil Emin, Qunyang Li, Junshuai Li, Yali Li, Deyan He
{"title":"合理设计用于储能设备的刺猬状 NiMn2S4 结构","authors":"Adil Emin, Qunyang Li, Junshuai Li, Yali Li, Deyan He","doi":"10.1016/j.ijoes.2024.100881","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the NiMn<sub>2</sub>S<sub>4</sub> nanomaterials were prepared by a two-step hydrothermal method with an external morphology similar to that of a sea hedgehog, with an overall micro-spherical shape surrounded by nanosheets (NSs). This unique nanostructure helps enhance the electrode material's specific surface area (SSA) and achieve a better pore size distribution, facilitating complete interaction among the electrolyte and the active materials. Moreover, it promotes the quick flow of electrons and smooth transport of ions, thus improving NiMn<sub>2</sub>S<sub>4</sub> electrode electrochemical performance. The NiMn<sub>2</sub>S<sub>4</sub> electrode achieved an capacitance of 1426.2 mF cm<sup>−2</sup> at 1 mA cm<sup>−2</sup>, with good rate performance (∼896.6 mF cm<sup>−2</sup> at 10 mA cm<sup>−2</sup>) and cycle stability (∼83.8 % retention after 6000 cycles). Sweep voltammetry analysis of its electrochemical behavior reveals that the primary energy storage mechanism is the capacitive contribution based on surface diffusion. This finding lays a foundation for future work on regulating and optimizing the electrochemical properties.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"19 12","pages":"Article 100881"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of hedgehog-like NiMn2S4 architectures for energy storage devices\",\"authors\":\"Adil Emin, Qunyang Li, Junshuai Li, Yali Li, Deyan He\",\"doi\":\"10.1016/j.ijoes.2024.100881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, the NiMn<sub>2</sub>S<sub>4</sub> nanomaterials were prepared by a two-step hydrothermal method with an external morphology similar to that of a sea hedgehog, with an overall micro-spherical shape surrounded by nanosheets (NSs). This unique nanostructure helps enhance the electrode material's specific surface area (SSA) and achieve a better pore size distribution, facilitating complete interaction among the electrolyte and the active materials. Moreover, it promotes the quick flow of electrons and smooth transport of ions, thus improving NiMn<sub>2</sub>S<sub>4</sub> electrode electrochemical performance. The NiMn<sub>2</sub>S<sub>4</sub> electrode achieved an capacitance of 1426.2 mF cm<sup>−2</sup> at 1 mA cm<sup>−2</sup>, with good rate performance (∼896.6 mF cm<sup>−2</sup> at 10 mA cm<sup>−2</sup>) and cycle stability (∼83.8 % retention after 6000 cycles). Sweep voltammetry analysis of its electrochemical behavior reveals that the primary energy storage mechanism is the capacitive contribution based on surface diffusion. This finding lays a foundation for future work on regulating and optimizing the electrochemical properties.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":\"19 12\",\"pages\":\"Article 100881\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398124004255\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124004255","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,采用两步水热法制备了镍锰2S4纳米材料,其外部形态类似于海刺猬,整体呈微球形,周围环绕着纳米片(NSs)。这种独特的纳米结构有助于提高电极材料的比表面积(SSA),实现更好的孔径分布,促进电解质和活性材料之间的完全相互作用。此外,它还能促进电子的快速流动和离子的顺利传输,从而提高镍锰硒电极的电化学性能。NiMn2S4 电极在 1 mA cm-2 时的电容为 1426.2 mF cm-2,具有良好的速率性能(10 mA cm-2 时为 896.6 mF cm-2)和循环稳定性(6000 次循环后的保持率为 83.8%)。对其电化学行为的扫频伏安分析表明,主要的储能机制是基于表面扩散的电容贡献。这一发现为今后调节和优化电化学特性的工作奠定了基础。
Rational design of hedgehog-like NiMn2S4 architectures for energy storage devices
In this work, the NiMn2S4 nanomaterials were prepared by a two-step hydrothermal method with an external morphology similar to that of a sea hedgehog, with an overall micro-spherical shape surrounded by nanosheets (NSs). This unique nanostructure helps enhance the electrode material's specific surface area (SSA) and achieve a better pore size distribution, facilitating complete interaction among the electrolyte and the active materials. Moreover, it promotes the quick flow of electrons and smooth transport of ions, thus improving NiMn2S4 electrode electrochemical performance. The NiMn2S4 electrode achieved an capacitance of 1426.2 mF cm−2 at 1 mA cm−2, with good rate performance (∼896.6 mF cm−2 at 10 mA cm−2) and cycle stability (∼83.8 % retention after 6000 cycles). Sweep voltammetry analysis of its electrochemical behavior reveals that the primary energy storage mechanism is the capacitive contribution based on surface diffusion. This finding lays a foundation for future work on regulating and optimizing the electrochemical properties.
期刊介绍:
International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry