M.H. Nazir , Z.A. Khan , Syed Zohaib Javaid Zaidi , Muhammad Majid Hussain , O.O. Taiwo
{"title":"在压应力和扩散应力共同作用下对圆形缺陷驱动的涂层脱层进行轴对称稳定性分析的增强模型","authors":"M.H. Nazir , Z.A. Khan , Syed Zohaib Javaid Zaidi , Muhammad Majid Hussain , O.O. Taiwo","doi":"10.1016/j.ijoes.2024.100876","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines the delamination of palladium (Pd) coatings bonded to a steel substrate under equi-biaxial compression coupled with diffusion-induced stress. The study focuses on circular delaminations. Large delaminations cause the coating to debond, forming blisters, which generate a driving force on the edge crack tip. A two-part theoretical model is developed: axisymmetric blister propagation in a stable circular pattern and non-axisymmetric perturbation of the blister leading to branching. Detailed experimental studies validate the theoretical predictions. The experiments show that non-axisymmetric crack tip instabilities during propagation result in worm-like patterns.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"19 12","pages":"Article 100876"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced model for axisymmetric stability analysis of propagating circular defect-driven coating delamination under combined compressive and diffusion-induced stresses\",\"authors\":\"M.H. Nazir , Z.A. Khan , Syed Zohaib Javaid Zaidi , Muhammad Majid Hussain , O.O. Taiwo\",\"doi\":\"10.1016/j.ijoes.2024.100876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper examines the delamination of palladium (Pd) coatings bonded to a steel substrate under equi-biaxial compression coupled with diffusion-induced stress. The study focuses on circular delaminations. Large delaminations cause the coating to debond, forming blisters, which generate a driving force on the edge crack tip. A two-part theoretical model is developed: axisymmetric blister propagation in a stable circular pattern and non-axisymmetric perturbation of the blister leading to branching. Detailed experimental studies validate the theoretical predictions. The experiments show that non-axisymmetric crack tip instabilities during propagation result in worm-like patterns.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":\"19 12\",\"pages\":\"Article 100876\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398124004206\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124004206","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Enhanced model for axisymmetric stability analysis of propagating circular defect-driven coating delamination under combined compressive and diffusion-induced stresses
This paper examines the delamination of palladium (Pd) coatings bonded to a steel substrate under equi-biaxial compression coupled with diffusion-induced stress. The study focuses on circular delaminations. Large delaminations cause the coating to debond, forming blisters, which generate a driving force on the edge crack tip. A two-part theoretical model is developed: axisymmetric blister propagation in a stable circular pattern and non-axisymmetric perturbation of the blister leading to branching. Detailed experimental studies validate the theoretical predictions. The experiments show that non-axisymmetric crack tip instabilities during propagation result in worm-like patterns.
期刊介绍:
International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry