{"title":"基于格林-林赛理论和卡普托-法布里齐奥分数阶导数的热弹性动态响应","authors":"Ying Guo, Pengjie Shi, Jianjun Ma, Fengjun Liu","doi":"10.1016/j.icheatmasstransfer.2024.108334","DOIUrl":null,"url":null,"abstract":"<div><div>To extend the applicability and accuracy of the generalized thermoelasticity theory of thermoelasticity theory for one-dimensional problems involving a moving heat source, this study proposes a fractional-order thermoelasticity coupling theoretical model based on the Green-Lindsay theory and the Caputo-Fabrizio fractional-order derivative. The model's uniqueness and reciprocity are well established. To show its application, we analyzed the thermoelastic coupled dynamic response of a fixed-end rod subjected to a moving heat source. Using Laplace transforms and its numerical inverse method, the distribution patterns of non-dimensional displacement, temperature, and stress were obtained. A comprehensive analysis was conducted to investigate the effects of the fractional coefficient, two thermal relaxation time factors, and moving heat source speed on non-dimensional displacement, temperature, and stress. The findings reveal that the fractional coefficient and the speed of the moving heat source significantly influence all non-dimensional physical variables. While the two distinct thermal relaxation time factors have a minimal influence on the non-dimensional temperature, they exert a more pronounced effect on non-dimensional displacement and stress.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"159 ","pages":"Article 108334"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic response of thermoelasticity based on Green-Lindsay theory and Caputo-Fabrizio fractional-order derivative\",\"authors\":\"Ying Guo, Pengjie Shi, Jianjun Ma, Fengjun Liu\",\"doi\":\"10.1016/j.icheatmasstransfer.2024.108334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To extend the applicability and accuracy of the generalized thermoelasticity theory of thermoelasticity theory for one-dimensional problems involving a moving heat source, this study proposes a fractional-order thermoelasticity coupling theoretical model based on the Green-Lindsay theory and the Caputo-Fabrizio fractional-order derivative. The model's uniqueness and reciprocity are well established. To show its application, we analyzed the thermoelastic coupled dynamic response of a fixed-end rod subjected to a moving heat source. Using Laplace transforms and its numerical inverse method, the distribution patterns of non-dimensional displacement, temperature, and stress were obtained. A comprehensive analysis was conducted to investigate the effects of the fractional coefficient, two thermal relaxation time factors, and moving heat source speed on non-dimensional displacement, temperature, and stress. The findings reveal that the fractional coefficient and the speed of the moving heat source significantly influence all non-dimensional physical variables. While the two distinct thermal relaxation time factors have a minimal influence on the non-dimensional temperature, they exert a more pronounced effect on non-dimensional displacement and stress.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"159 \",\"pages\":\"Article 108334\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193324010960\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324010960","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Dynamic response of thermoelasticity based on Green-Lindsay theory and Caputo-Fabrizio fractional-order derivative
To extend the applicability and accuracy of the generalized thermoelasticity theory of thermoelasticity theory for one-dimensional problems involving a moving heat source, this study proposes a fractional-order thermoelasticity coupling theoretical model based on the Green-Lindsay theory and the Caputo-Fabrizio fractional-order derivative. The model's uniqueness and reciprocity are well established. To show its application, we analyzed the thermoelastic coupled dynamic response of a fixed-end rod subjected to a moving heat source. Using Laplace transforms and its numerical inverse method, the distribution patterns of non-dimensional displacement, temperature, and stress were obtained. A comprehensive analysis was conducted to investigate the effects of the fractional coefficient, two thermal relaxation time factors, and moving heat source speed on non-dimensional displacement, temperature, and stress. The findings reveal that the fractional coefficient and the speed of the moving heat source significantly influence all non-dimensional physical variables. While the two distinct thermal relaxation time factors have a minimal influence on the non-dimensional temperature, they exert a more pronounced effect on non-dimensional displacement and stress.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.