用于图像消斑的依赖于 γ(u,|∇u0,σ|) 的新型可变指数 PDE

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Nonlinear Analysis-Real World Applications Pub Date : 2024-11-22 DOI:10.1016/j.nonrwa.2024.104264
A. Nachaoui , A. Laghrib , A. Hadri , M. Nachaoui
{"title":"用于图像消斑的依赖于 γ(u,|∇u0,σ|) 的新型可变指数 PDE","authors":"A. Nachaoui ,&nbsp;A. Laghrib ,&nbsp;A. Hadri ,&nbsp;M. Nachaoui","doi":"10.1016/j.nonrwa.2024.104264","DOIUrl":null,"url":null,"abstract":"<div><div>Within the realm of image processing, image denoising holds significant importance. This study focuses on tackling denoising challenges posed by Speckle noise. We introduce a novel variable <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mrow><mo>|</mo><mo>∇</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>σ</mi></mrow></msub><mo>|</mo></mrow><mo>)</mo></mrow></mrow></math></span>-PDE-based denoising model, offering a fresh perspective. Our approach involves a unique class of PDEs, wherein the nonlinear structure relies on spatially nonlocal exponent dependent factors linked to the target solution and also its gradient. This innovation incorporates grayscale information by introducing the variable exponent <span><math><mi>γ</mi></math></span>, which controls much better the diffusion and incorporates information from wide regions. The existence and uniqueness of the proposed PDE are established through Galerkin’s approximation. Furthermore, a series of experiments are conducted for denoising, including comparisons with other models, in order to validate the selection of the variable exponent parameter. This research contributes to the advancement of image denoising methods with high theoretical foundations and potential implications for other applications.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"83 ","pages":"Article 104264"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel variable exponent PDE with dependency on γ(u,|∇u0,σ|) for image despeckling application\",\"authors\":\"A. Nachaoui ,&nbsp;A. Laghrib ,&nbsp;A. Hadri ,&nbsp;M. Nachaoui\",\"doi\":\"10.1016/j.nonrwa.2024.104264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Within the realm of image processing, image denoising holds significant importance. This study focuses on tackling denoising challenges posed by Speckle noise. We introduce a novel variable <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mrow><mo>|</mo><mo>∇</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>σ</mi></mrow></msub><mo>|</mo></mrow><mo>)</mo></mrow></mrow></math></span>-PDE-based denoising model, offering a fresh perspective. Our approach involves a unique class of PDEs, wherein the nonlinear structure relies on spatially nonlocal exponent dependent factors linked to the target solution and also its gradient. This innovation incorporates grayscale information by introducing the variable exponent <span><math><mi>γ</mi></math></span>, which controls much better the diffusion and incorporates information from wide regions. The existence and uniqueness of the proposed PDE are established through Galerkin’s approximation. Furthermore, a series of experiments are conducted for denoising, including comparisons with other models, in order to validate the selection of the variable exponent parameter. This research contributes to the advancement of image denoising methods with high theoretical foundations and potential implications for other applications.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"83 \",\"pages\":\"Article 104264\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824002037\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002037","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在图像处理领域,图像去噪具有重要意义。本研究的重点是解决斑点噪声带来的去噪难题。我们引入了一个新颖的基于变量 γ(u,|∇u0,σ|)-PDE 的去噪模型,提供了一个全新的视角。我们的方法涉及一类独特的 PDE,其中的非线性结构依赖于与目标解及其梯度相关的空间非局部指数因子。这种创新通过引入可变指数 γ 来纳入灰度信息,从而更好地控制扩散并纳入来自广泛区域的信息。通过伽勒金近似,确定了所提出的 PDE 的存在性和唯一性。此外,还进行了一系列去噪实验,包括与其他模型的比较,以验证可变指数参数的选择。这项研究为图像去噪方法的发展做出了贡献,具有很高的理论基础,并对其他应用具有潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel variable exponent PDE with dependency on γ(u,|∇u0,σ|) for image despeckling application
Within the realm of image processing, image denoising holds significant importance. This study focuses on tackling denoising challenges posed by Speckle noise. We introduce a novel variable γ(u,|u0,σ|)-PDE-based denoising model, offering a fresh perspective. Our approach involves a unique class of PDEs, wherein the nonlinear structure relies on spatially nonlocal exponent dependent factors linked to the target solution and also its gradient. This innovation incorporates grayscale information by introducing the variable exponent γ, which controls much better the diffusion and incorporates information from wide regions. The existence and uniqueness of the proposed PDE are established through Galerkin’s approximation. Furthermore, a series of experiments are conducted for denoising, including comparisons with other models, in order to validate the selection of the variable exponent parameter. This research contributes to the advancement of image denoising methods with high theoretical foundations and potential implications for other applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
期刊最新文献
N-wave-like properties for entropy solutions to scalar parabolic–hyperbolic conservation laws Analysis of a Navier–Stokes phase-field crystal system Wave breaking for the Degasperis–Procesi equation A novel variable exponent PDE with dependency on γ(u,|∇u0,σ|) for image despeckling application Global existence and boundedness of solutions to a two-dimensional forager-exploiter model with/without logistic source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1