上下文正常化:稳定和提高神经网络性能的新方法

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2024-11-15 DOI:10.1016/j.datak.2024.102371
Bilal Faye , Hanane Azzag , Mustapha Lebbah , Fangchen Feng
{"title":"上下文正常化:稳定和提高神经网络性能的新方法","authors":"Bilal Faye ,&nbsp;Hanane Azzag ,&nbsp;Mustapha Lebbah ,&nbsp;Fangchen Feng","doi":"10.1016/j.datak.2024.102371","DOIUrl":null,"url":null,"abstract":"<div><div>Deep neural networks face challenges with distribution shifts across layers, affecting model convergence and performance. While Batch Normalization (BN) addresses these issues, its reliance on a single Gaussian distribution assumption limits adaptability. To overcome this, alternatives like Layer Normalization, Group Normalization, and Mixture Normalization emerged, yet struggle with dynamic activation distributions. We propose ”Context Normalization” (CN), introducing contexts constructed from domain knowledge. CN normalizes data within the same context, enabling local representation. During backpropagation, CN learns normalized parameters and model weights for each context, ensuring efficient convergence and superior performance compared to BN and MN. This approach emphasizes context utilization, offering a fresh perspective on activation normalization in neural networks. We release our code at <span><span>https://github.com/b-faye/Context-Normalization</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"155 ","pages":"Article 102371"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context normalization: A new approach for the stability and improvement of neural network performance\",\"authors\":\"Bilal Faye ,&nbsp;Hanane Azzag ,&nbsp;Mustapha Lebbah ,&nbsp;Fangchen Feng\",\"doi\":\"10.1016/j.datak.2024.102371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep neural networks face challenges with distribution shifts across layers, affecting model convergence and performance. While Batch Normalization (BN) addresses these issues, its reliance on a single Gaussian distribution assumption limits adaptability. To overcome this, alternatives like Layer Normalization, Group Normalization, and Mixture Normalization emerged, yet struggle with dynamic activation distributions. We propose ”Context Normalization” (CN), introducing contexts constructed from domain knowledge. CN normalizes data within the same context, enabling local representation. During backpropagation, CN learns normalized parameters and model weights for each context, ensuring efficient convergence and superior performance compared to BN and MN. This approach emphasizes context utilization, offering a fresh perspective on activation normalization in neural networks. We release our code at <span><span>https://github.com/b-faye/Context-Normalization</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"155 \",\"pages\":\"Article 102371\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000958\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000958","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络面临着跨层分布偏移的挑战,这会影响模型的收敛性和性能。虽然批量归一化(BN)解决了这些问题,但它对单一高斯分布假设的依赖限制了适应性。为了克服这一问题,出现了层归一化、组归一化和混合归一化等替代方案,但在动态激活分布方面仍有困难。我们提出了 "上下文归一化"(CN),引入由领域知识构建的上下文。CN 对同一上下文中的数据进行归一化处理,从而实现局部表征。在反向传播过程中,CN 会学习每个上下文的归一化参数和模型权重,从而确保高效收敛,并获得优于 BN 和 MN 的性能。这种方法强调上下文的利用,为神经网络中的激活归一化提供了一个全新的视角。我们在 https://github.com/b-faye/Context-Normalization 上发布了我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Context normalization: A new approach for the stability and improvement of neural network performance
Deep neural networks face challenges with distribution shifts across layers, affecting model convergence and performance. While Batch Normalization (BN) addresses these issues, its reliance on a single Gaussian distribution assumption limits adaptability. To overcome this, alternatives like Layer Normalization, Group Normalization, and Mixture Normalization emerged, yet struggle with dynamic activation distributions. We propose ”Context Normalization” (CN), introducing contexts constructed from domain knowledge. CN normalizes data within the same context, enabling local representation. During backpropagation, CN learns normalized parameters and model weights for each context, ensuring efficient convergence and superior performance compared to BN and MN. This approach emphasizes context utilization, offering a fresh perspective on activation normalization in neural networks. We release our code at https://github.com/b-faye/Context-Normalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
Improving multi-view ensemble learning with Round-Robin feature set partitioning White box specification of intervention policies for prescriptive process monitoring A goal-oriented document-grounded dialogue based on evidence generation Data-aware process models: From soundness checking to repair Context normalization: A new approach for the stability and improvement of neural network performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1