{"title":"人工智能导向对低效投资的影响:来自中国能源企业的公司层面证据","authors":"Minhan Zhai , Wenqing Wu , Sang-Bing Tsai","doi":"10.1016/j.eneco.2024.108048","DOIUrl":null,"url":null,"abstract":"<div><div>The development of Artificial Intelligence (AI) has brought both opportunities and challenges for energy enterprises to make investment decisions. This paper considers an Artificial intelligence orientation (AIO) indicator that reflects AI introduction and deployment to analyze whether and how AIO affects inefficient investment in energy enterprises. By using machine learning methods to construct AIO indicators, this paper finds that AIO can effectively alleviate ineffective investments in energy enterprises. Furthermore, this paper explores the moderating effects of the absorbed slack resources and conducts heterogeneity analysis based on enterprises ownership and lifecycle. The research results indicate that absorbed slack resources can weaken the alleviating effect of AIO on investment inefficiency. Besides, heterogeneity analysis also reveals that AIO can significantly alleviate investment inefficiency in the non-state-owned energy enterprises and those in the growth stage. These findings are important for energy enterprises to adopt and deploy AI technologies.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"141 ","pages":"Article 108048"},"PeriodicalIF":13.6000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of Artificial intelligence orientation on inefficient investment: Firm-level evidence from China's energy enterprises\",\"authors\":\"Minhan Zhai , Wenqing Wu , Sang-Bing Tsai\",\"doi\":\"10.1016/j.eneco.2024.108048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of Artificial Intelligence (AI) has brought both opportunities and challenges for energy enterprises to make investment decisions. This paper considers an Artificial intelligence orientation (AIO) indicator that reflects AI introduction and deployment to analyze whether and how AIO affects inefficient investment in energy enterprises. By using machine learning methods to construct AIO indicators, this paper finds that AIO can effectively alleviate ineffective investments in energy enterprises. Furthermore, this paper explores the moderating effects of the absorbed slack resources and conducts heterogeneity analysis based on enterprises ownership and lifecycle. The research results indicate that absorbed slack resources can weaken the alleviating effect of AIO on investment inefficiency. Besides, heterogeneity analysis also reveals that AIO can significantly alleviate investment inefficiency in the non-state-owned energy enterprises and those in the growth stage. These findings are important for energy enterprises to adopt and deploy AI technologies.</div></div>\",\"PeriodicalId\":11665,\"journal\":{\"name\":\"Energy Economics\",\"volume\":\"141 \",\"pages\":\"Article 108048\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140988324007576\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988324007576","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
The effects of Artificial intelligence orientation on inefficient investment: Firm-level evidence from China's energy enterprises
The development of Artificial Intelligence (AI) has brought both opportunities and challenges for energy enterprises to make investment decisions. This paper considers an Artificial intelligence orientation (AIO) indicator that reflects AI introduction and deployment to analyze whether and how AIO affects inefficient investment in energy enterprises. By using machine learning methods to construct AIO indicators, this paper finds that AIO can effectively alleviate ineffective investments in energy enterprises. Furthermore, this paper explores the moderating effects of the absorbed slack resources and conducts heterogeneity analysis based on enterprises ownership and lifecycle. The research results indicate that absorbed slack resources can weaken the alleviating effect of AIO on investment inefficiency. Besides, heterogeneity analysis also reveals that AIO can significantly alleviate investment inefficiency in the non-state-owned energy enterprises and those in the growth stage. These findings are important for energy enterprises to adopt and deploy AI technologies.
期刊介绍:
Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.