{"title":"用于固态锂金属电池的具有高电化学兼容性的硅增强功能复合聚合物电解质","authors":"Bhargabi Halder , A. Santhana Krishna Kumar , Wei-Lung Tseng , Perumal Elumalai","doi":"10.1016/j.materresbull.2024.113209","DOIUrl":null,"url":null,"abstract":"<div><div>Composite polymer-ceramic electrolytes (CPEs) are emerging as viable substitute providing high ionic conductivity, mechanical stability, and good safety for the progress of all-solid-state rechargeable batteries. Here, SiO<sub>2</sub> particles were generated from beach sands via a simple gelation method and embedded in to poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) to obtain precisely two types of the electrolytes namely, electrospun and solution casted. The 2.5 wt.% SiO<sub>2</sub>-embedded CPEs generated by electrospinning and solution-casting exhibit best ionic conductivities being 3.6 × 10<sup>–4</sup> and 1.3 × 10<sup>–4</sup> S cm<sup>-1</sup> at 30 °C, respectively. The polarization voltage for the electrospun CPE was particularly low and showed an extremely stable voltage plateau up to 300 h demonstrating high electrochemical compatibility and immense cycling stability. Consequently, the all solid-state lithium metal battery (Li|CPE|LiFePO<sub>4</sub>) using the electrospun CPE initially exhibits a discharge capacity of 142 mAh g<sup>-1</sup> at 0.1C-rate superior to that of the full cell using the solution-casted CPE.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"183 ","pages":"Article 113209"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silica-reinforced functional composite polymer electrolyte with high electrochemical compatibility for solid-state lithium metal battery\",\"authors\":\"Bhargabi Halder , A. Santhana Krishna Kumar , Wei-Lung Tseng , Perumal Elumalai\",\"doi\":\"10.1016/j.materresbull.2024.113209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Composite polymer-ceramic electrolytes (CPEs) are emerging as viable substitute providing high ionic conductivity, mechanical stability, and good safety for the progress of all-solid-state rechargeable batteries. Here, SiO<sub>2</sub> particles were generated from beach sands via a simple gelation method and embedded in to poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) to obtain precisely two types of the electrolytes namely, electrospun and solution casted. The 2.5 wt.% SiO<sub>2</sub>-embedded CPEs generated by electrospinning and solution-casting exhibit best ionic conductivities being 3.6 × 10<sup>–4</sup> and 1.3 × 10<sup>–4</sup> S cm<sup>-1</sup> at 30 °C, respectively. The polarization voltage for the electrospun CPE was particularly low and showed an extremely stable voltage plateau up to 300 h demonstrating high electrochemical compatibility and immense cycling stability. Consequently, the all solid-state lithium metal battery (Li|CPE|LiFePO<sub>4</sub>) using the electrospun CPE initially exhibits a discharge capacity of 142 mAh g<sup>-1</sup> at 0.1C-rate superior to that of the full cell using the solution-casted CPE.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"183 \",\"pages\":\"Article 113209\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824005397\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005397","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
复合聚合物陶瓷电解质(CPEs)具有高离子电导率、机械稳定性和良好的安全性,正在成为全固态充电电池的可行替代品。在这里,通过简单的凝胶化方法从海滩砂中生成了二氧化硅颗粒,并将其嵌入聚偏二氟乙烯-六氟丙烯(PVDF-HFP)中,从而获得了两种类型的电解质,即电纺电解质和溶液浇铸电解质。通过电纺丝和溶液浇铸生成的 2.5 wt.% 嵌入二氧化硅的氯化聚乙烯在 30 °C 时的离子电导率最好,分别为 3.6 × 10-4 和 1.3 × 10-4 S cm-1。电纺丝氯化聚乙烯的极化电压特别低,并在 300 小时内显示出极其稳定的电压平台,这表明其具有很高的电化学兼容性和巨大的循环稳定性。因此,使用电纺丝 CPE 的全固态锂金属电池(Li|CPE|LiFePO4)最初在 0.1C 速率下的放电容量为 142 mAh g-1,优于使用溶液浇铸 CPE 的全电池。
Silica-reinforced functional composite polymer electrolyte with high electrochemical compatibility for solid-state lithium metal battery
Composite polymer-ceramic electrolytes (CPEs) are emerging as viable substitute providing high ionic conductivity, mechanical stability, and good safety for the progress of all-solid-state rechargeable batteries. Here, SiO2 particles were generated from beach sands via a simple gelation method and embedded in to poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) to obtain precisely two types of the electrolytes namely, electrospun and solution casted. The 2.5 wt.% SiO2-embedded CPEs generated by electrospinning and solution-casting exhibit best ionic conductivities being 3.6 × 10–4 and 1.3 × 10–4 S cm-1 at 30 °C, respectively. The polarization voltage for the electrospun CPE was particularly low and showed an extremely stable voltage plateau up to 300 h demonstrating high electrochemical compatibility and immense cycling stability. Consequently, the all solid-state lithium metal battery (Li|CPE|LiFePO4) using the electrospun CPE initially exhibits a discharge capacity of 142 mAh g-1 at 0.1C-rate superior to that of the full cell using the solution-casted CPE.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.