用于固态锂金属电池的具有高电化学兼容性的硅增强功能复合聚合物电解质

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-11-17 DOI:10.1016/j.materresbull.2024.113209
Bhargabi Halder , A. Santhana Krishna Kumar , Wei-Lung Tseng , Perumal Elumalai
{"title":"用于固态锂金属电池的具有高电化学兼容性的硅增强功能复合聚合物电解质","authors":"Bhargabi Halder ,&nbsp;A. Santhana Krishna Kumar ,&nbsp;Wei-Lung Tseng ,&nbsp;Perumal Elumalai","doi":"10.1016/j.materresbull.2024.113209","DOIUrl":null,"url":null,"abstract":"<div><div>Composite polymer-ceramic electrolytes (CPEs) are emerging as viable substitute providing high ionic conductivity, mechanical stability, and good safety for the progress of all-solid-state rechargeable batteries. Here, SiO<sub>2</sub> particles were generated from beach sands via a simple gelation method and embedded in to poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) to obtain precisely two types of the electrolytes namely, electrospun and solution casted. The 2.5 wt.% SiO<sub>2</sub>-embedded CPEs generated by electrospinning and solution-casting exhibit best ionic conductivities being 3.6 × 10<sup>–4</sup> and 1.3 × 10<sup>–4</sup> S cm<sup>-1</sup> at 30 °C, respectively. The polarization voltage for the electrospun CPE was particularly low and showed an extremely stable voltage plateau up to 300 h demonstrating high electrochemical compatibility and immense cycling stability. Consequently, the all solid-state lithium metal battery (Li|CPE|LiFePO<sub>4</sub>) using the electrospun CPE initially exhibits a discharge capacity of 142 mAh g<sup>-1</sup> at 0.1C-rate superior to that of the full cell using the solution-casted CPE.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"183 ","pages":"Article 113209"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silica-reinforced functional composite polymer electrolyte with high electrochemical compatibility for solid-state lithium metal battery\",\"authors\":\"Bhargabi Halder ,&nbsp;A. Santhana Krishna Kumar ,&nbsp;Wei-Lung Tseng ,&nbsp;Perumal Elumalai\",\"doi\":\"10.1016/j.materresbull.2024.113209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Composite polymer-ceramic electrolytes (CPEs) are emerging as viable substitute providing high ionic conductivity, mechanical stability, and good safety for the progress of all-solid-state rechargeable batteries. Here, SiO<sub>2</sub> particles were generated from beach sands via a simple gelation method and embedded in to poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) to obtain precisely two types of the electrolytes namely, electrospun and solution casted. The 2.5 wt.% SiO<sub>2</sub>-embedded CPEs generated by electrospinning and solution-casting exhibit best ionic conductivities being 3.6 × 10<sup>–4</sup> and 1.3 × 10<sup>–4</sup> S cm<sup>-1</sup> at 30 °C, respectively. The polarization voltage for the electrospun CPE was particularly low and showed an extremely stable voltage plateau up to 300 h demonstrating high electrochemical compatibility and immense cycling stability. Consequently, the all solid-state lithium metal battery (Li|CPE|LiFePO<sub>4</sub>) using the electrospun CPE initially exhibits a discharge capacity of 142 mAh g<sup>-1</sup> at 0.1C-rate superior to that of the full cell using the solution-casted CPE.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"183 \",\"pages\":\"Article 113209\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824005397\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005397","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

复合聚合物陶瓷电解质(CPEs)具有高离子电导率、机械稳定性和良好的安全性,正在成为全固态充电电池的可行替代品。在这里,通过简单的凝胶化方法从海滩砂中生成了二氧化硅颗粒,并将其嵌入聚偏二氟乙烯-六氟丙烯(PVDF-HFP)中,从而获得了两种类型的电解质,即电纺电解质和溶液浇铸电解质。通过电纺丝和溶液浇铸生成的 2.5 wt.% 嵌入二氧化硅的氯化聚乙烯在 30 °C 时的离子电导率最好,分别为 3.6 × 10-4 和 1.3 × 10-4 S cm-1。电纺丝氯化聚乙烯的极化电压特别低,并在 300 小时内显示出极其稳定的电压平台,这表明其具有很高的电化学兼容性和巨大的循环稳定性。因此,使用电纺丝 CPE 的全固态锂金属电池(Li|CPE|LiFePO4)最初在 0.1C 速率下的放电容量为 142 mAh g-1,优于使用溶液浇铸 CPE 的全电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silica-reinforced functional composite polymer electrolyte with high electrochemical compatibility for solid-state lithium metal battery
Composite polymer-ceramic electrolytes (CPEs) are emerging as viable substitute providing high ionic conductivity, mechanical stability, and good safety for the progress of all-solid-state rechargeable batteries. Here, SiO2 particles were generated from beach sands via a simple gelation method and embedded in to poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) to obtain precisely two types of the electrolytes namely, electrospun and solution casted. The 2.5 wt.% SiO2-embedded CPEs generated by electrospinning and solution-casting exhibit best ionic conductivities being 3.6 × 10–4 and 1.3 × 10–4 S cm-1 at 30 °C, respectively. The polarization voltage for the electrospun CPE was particularly low and showed an extremely stable voltage plateau up to 300 h demonstrating high electrochemical compatibility and immense cycling stability. Consequently, the all solid-state lithium metal battery (Li|CPE|LiFePO4) using the electrospun CPE initially exhibits a discharge capacity of 142 mAh g-1 at 0.1C-rate superior to that of the full cell using the solution-casted CPE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Editorial Board Fabrication of Dy:GdVO4 single crystals and evaluation of scintillation performance Enhanced piezoelectric response of Na0.5Bi0.5TiO3-BaTiO3 lead free ceramics by tuning the local polar heterogeneity Engineering novel MnxCd1-xS self-assembled p-n junction modified with NiS for enhanced photocatalytic hydrogen evolution Magnetic behavior of nanofilms prepared by assembling different Co ferrite nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1