双金属纳米复合材料超薄薄膜的电聚合:增强超级电容器的性能和完美稳定性

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-11-17 DOI:10.1016/j.materresbull.2024.113211
Samira Doostikhah , Mehdi Shabani-Nooshabadi , Ali Ehsani , Mohammad Bigdeloo
{"title":"双金属纳米复合材料超薄薄膜的电聚合:增强超级电容器的性能和完美稳定性","authors":"Samira Doostikhah ,&nbsp;Mehdi Shabani-Nooshabadi ,&nbsp;Ali Ehsani ,&nbsp;Mohammad Bigdeloo","doi":"10.1016/j.materresbull.2024.113211","DOIUrl":null,"url":null,"abstract":"<div><div>This research focused on synthesizing nanocomposites from vanadium-1.3.5-benzene tricarboxylic acid (V-BTC), vanadium-molibden-1.3.5-benzene tricarboxylic acid (V-BTC-Mo), and vanadium-molibden-1.3.5-benzene tricarboxylic acid/poly-orto-aminophenol (V-BTC-Mo/POAP) using chemical and electrochemical methods. The materials were analyzed using various analytical techniques such as XRD, FT-IR, FE-SEM, Elemental Mapping, and Edx. The SEM images revealed a nanorod structure of metal-organic framework (MOF) with a high specific surface area (SSA) of 131.13 m<sup>2</sup>.g<sup>−1</sup> determined by nitrogen adsorption-desorption analysis. Electrochemical techniques including galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were employed to assess the supercapacitor (SC) properties. The results indicated that the V-BTC-MO/POAP composite exhibited a high specific capacitance (Cs) of 420.2 F g<sup>−1</sup>, with a high energy density of 38.1 Wh kg<sup>−1</sup> at a power density of 236.2 W kg<sup>−1</sup>. Also, the V-BTC-Mo/POAP electrode demonstrated a good performance in structural stability by maintaining 97.3 % of the initial capacitance after 5000 continuous charge-discharge. Overall, the research aimed to develop a new methodology for synthesizing bimetallic nanocomposites and enhancing the performance of SCs in a three and two-electrode system, particularly focusing on vanadium and MOF-based electrodes.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"183 ","pages":"Article 113211"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electropolymerization of an Ultra-thin Film on bimetallic nanocomposite: Enhanced performance, perfect stability for supercapacitors\",\"authors\":\"Samira Doostikhah ,&nbsp;Mehdi Shabani-Nooshabadi ,&nbsp;Ali Ehsani ,&nbsp;Mohammad Bigdeloo\",\"doi\":\"10.1016/j.materresbull.2024.113211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research focused on synthesizing nanocomposites from vanadium-1.3.5-benzene tricarboxylic acid (V-BTC), vanadium-molibden-1.3.5-benzene tricarboxylic acid (V-BTC-Mo), and vanadium-molibden-1.3.5-benzene tricarboxylic acid/poly-orto-aminophenol (V-BTC-Mo/POAP) using chemical and electrochemical methods. The materials were analyzed using various analytical techniques such as XRD, FT-IR, FE-SEM, Elemental Mapping, and Edx. The SEM images revealed a nanorod structure of metal-organic framework (MOF) with a high specific surface area (SSA) of 131.13 m<sup>2</sup>.g<sup>−1</sup> determined by nitrogen adsorption-desorption analysis. Electrochemical techniques including galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were employed to assess the supercapacitor (SC) properties. The results indicated that the V-BTC-MO/POAP composite exhibited a high specific capacitance (Cs) of 420.2 F g<sup>−1</sup>, with a high energy density of 38.1 Wh kg<sup>−1</sup> at a power density of 236.2 W kg<sup>−1</sup>. Also, the V-BTC-Mo/POAP electrode demonstrated a good performance in structural stability by maintaining 97.3 % of the initial capacitance after 5000 continuous charge-discharge. Overall, the research aimed to develop a new methodology for synthesizing bimetallic nanocomposites and enhancing the performance of SCs in a three and two-electrode system, particularly focusing on vanadium and MOF-based electrodes.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"183 \",\"pages\":\"Article 113211\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824005415\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005415","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是利用化学和电化学方法合成 1.3.5-苯三羧酸钒(V-BTC)、1.3.5-苯三羧酸钒(V-BTC-Mo)和 1.3.5-苯三羧酸钒/聚邻氨基苯酚(V-BTC-Mo/POAP)纳米复合材料。利用 XRD、FT-IR、FE-SEM、元素图谱和 Edx 等多种分析技术对材料进行了分析。扫描电子显微镜图像显示了金属有机框架(MOF)的纳米棒结构,通过氮吸附-解吸分析确定其具有 131.13 m2.g-1 的高比表面积(SSA)。为了评估超级电容器(SC)的性能,采用了电化学技术,包括电静态充放电(GCD)、电化学阻抗谱(EIS)和循环伏安法(CV)。结果表明,V-BTC-MO/POAP 复合材料的比电容(Cs)高达 420.2 F g-1,在功率密度为 236.2 W kg-1 时,能量密度高达 38.1 Wh kg-1。此外,V-BTC-Mo/POAP 电极在连续充放电 5000 次后仍能保持 97.3% 的初始电容,表现出良好的结构稳定性。总之,该研究旨在开发一种合成双金属纳米复合材料的新方法,并提高 SCs 在三电极和双电极系统中的性能,尤其侧重于基于钒和 MOF 的电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electropolymerization of an Ultra-thin Film on bimetallic nanocomposite: Enhanced performance, perfect stability for supercapacitors
This research focused on synthesizing nanocomposites from vanadium-1.3.5-benzene tricarboxylic acid (V-BTC), vanadium-molibden-1.3.5-benzene tricarboxylic acid (V-BTC-Mo), and vanadium-molibden-1.3.5-benzene tricarboxylic acid/poly-orto-aminophenol (V-BTC-Mo/POAP) using chemical and electrochemical methods. The materials were analyzed using various analytical techniques such as XRD, FT-IR, FE-SEM, Elemental Mapping, and Edx. The SEM images revealed a nanorod structure of metal-organic framework (MOF) with a high specific surface area (SSA) of 131.13 m2.g−1 determined by nitrogen adsorption-desorption analysis. Electrochemical techniques including galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were employed to assess the supercapacitor (SC) properties. The results indicated that the V-BTC-MO/POAP composite exhibited a high specific capacitance (Cs) of 420.2 F g−1, with a high energy density of 38.1 Wh kg−1 at a power density of 236.2 W kg−1. Also, the V-BTC-Mo/POAP electrode demonstrated a good performance in structural stability by maintaining 97.3 % of the initial capacitance after 5000 continuous charge-discharge. Overall, the research aimed to develop a new methodology for synthesizing bimetallic nanocomposites and enhancing the performance of SCs in a three and two-electrode system, particularly focusing on vanadium and MOF-based electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Editorial Board Fabrication of Dy:GdVO4 single crystals and evaluation of scintillation performance Enhanced piezoelectric response of Na0.5Bi0.5TiO3-BaTiO3 lead free ceramics by tuning the local polar heterogeneity Engineering novel MnxCd1-xS self-assembled p-n junction modified with NiS for enhanced photocatalytic hydrogen evolution Magnetic behavior of nanofilms prepared by assembling different Co ferrite nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1