交易指标的多目标同步优化方法

Nhat M. Nguyen, Minh Tran
{"title":"交易指标的多目标同步优化方法","authors":"Nhat M. Nguyen,&nbsp;Minh Tran","doi":"10.1016/j.rico.2024.100501","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel framework for optimizing trading indicators using a multi-objective Particle Swarm Optimization approach. By simultaneously optimizing multiple technical indicators, the method overcomes the limitations of single-objective optimization and complex strategies, resulting in a more robust trading approach. Experiments on VN30-Index daily data demonstrate that the optimized strategy outperforms benchmark and buy-and-hold strategies in terms of returns and Sharpe ratios. Our findings prove that the multi-objective Particle Swarm Optimization method efficiently balances the complexity to combine various technical indicators in a way that keeps the logic of the strategy simple. The technique not only reduces the risks of relying on one indicator but also reduces behavioral influences in the stock selection process. Furthermore, our study adds to the literature a simple and effective method that helps traders identify profitable investment opportunities in different market scenarios.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"17 ","pages":"Article 100501"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous multi-objective optimization method for trading indicators\",\"authors\":\"Nhat M. Nguyen,&nbsp;Minh Tran\",\"doi\":\"10.1016/j.rico.2024.100501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a novel framework for optimizing trading indicators using a multi-objective Particle Swarm Optimization approach. By simultaneously optimizing multiple technical indicators, the method overcomes the limitations of single-objective optimization and complex strategies, resulting in a more robust trading approach. Experiments on VN30-Index daily data demonstrate that the optimized strategy outperforms benchmark and buy-and-hold strategies in terms of returns and Sharpe ratios. Our findings prove that the multi-objective Particle Swarm Optimization method efficiently balances the complexity to combine various technical indicators in a way that keeps the logic of the strategy simple. The technique not only reduces the risks of relying on one indicator but also reduces behavioral influences in the stock selection process. Furthermore, our study adds to the literature a simple and effective method that helps traders identify profitable investment opportunities in different market scenarios.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"17 \",\"pages\":\"Article 100501\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724001310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724001310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用多目标粒子群优化法优化交易指标的新框架。通过同时优化多个技术指标,该方法克服了单目标优化和复杂策略的局限性,从而产生了一种更稳健的交易方法。对 VN30 指数每日数据的实验表明,优化后的策略在收益和夏普比率方面优于基准策略和买入并持有策略。我们的研究结果证明,多目标粒子群优化方法有效地平衡了各种技术指标的复杂性,使策略逻辑保持简单。该技术不仅降低了依赖单一指标的风险,还减少了选股过程中的行为影响。此外,我们的研究为文献增添了一种简单有效的方法,可帮助交易者在不同的市场情况下识别有利可图的投资机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous multi-objective optimization method for trading indicators
This paper proposes a novel framework for optimizing trading indicators using a multi-objective Particle Swarm Optimization approach. By simultaneously optimizing multiple technical indicators, the method overcomes the limitations of single-objective optimization and complex strategies, resulting in a more robust trading approach. Experiments on VN30-Index daily data demonstrate that the optimized strategy outperforms benchmark and buy-and-hold strategies in terms of returns and Sharpe ratios. Our findings prove that the multi-objective Particle Swarm Optimization method efficiently balances the complexity to combine various technical indicators in a way that keeps the logic of the strategy simple. The technique not only reduces the risks of relying on one indicator but also reduces behavioral influences in the stock selection process. Furthermore, our study adds to the literature a simple and effective method that helps traders identify profitable investment opportunities in different market scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
期刊最新文献
A novel approach in controlling the spread of a rumor within a crowd A comparison study on optical character recognition models in mathematical equations and in any language Multiple sclerosis diagnosis with brain MRI retrieval: A deep learning approach Integral invariant manifold method applied to a mathematical model of osteosarcoma Evaluating consumers benefits in electronic-commerce using fuzzy TOPSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1