Evgenia Spyridonos , Yanan Guo , Marta Gil Pérez , Hanaa Dahy
{"title":"利用天然纤维拉挤型材进行主动弯曲结构的几何和结构设计开发:LightPRO 外壳","authors":"Evgenia Spyridonos , Yanan Guo , Marta Gil Pérez , Hanaa Dahy","doi":"10.1016/j.dibe.2024.100577","DOIUrl":null,"url":null,"abstract":"<div><div>The utilisation of bio-based materials has significantly increased in recent years, driven by a growing awareness of environmentally friendly alternatives in the construction industry. This study introduces innovative natural fibre pultruded profiles for load-bearing applications in structural systems. By employing pultrusion technology with flax fibres and customised plant-based matrix, linear and unidirectional biocomposite profiles were developed. These profiles were used in the creation of LightPRO Shell, an active-bending structure combining biocomposite profiles with a membrane outer skin, demonstrating their mechanical properties and suitability for such applications. The paper focuses on the geometrical and structural design development of the structure employing computational design tools for optimisation, ensuring design parameters and performance requirements were met. The final structure, a 10-m span doubly curved gridshell, features a continuous perimeter beam and consists of 44 profiles ranging from 6 to 12.5 m, showcasing the potential of natural fibre biocomposites as sustainable alternatives in construction.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100577"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrical and structural design development of an active-bending structure from natural fibre pultruded profiles: The LightPRO shell\",\"authors\":\"Evgenia Spyridonos , Yanan Guo , Marta Gil Pérez , Hanaa Dahy\",\"doi\":\"10.1016/j.dibe.2024.100577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The utilisation of bio-based materials has significantly increased in recent years, driven by a growing awareness of environmentally friendly alternatives in the construction industry. This study introduces innovative natural fibre pultruded profiles for load-bearing applications in structural systems. By employing pultrusion technology with flax fibres and customised plant-based matrix, linear and unidirectional biocomposite profiles were developed. These profiles were used in the creation of LightPRO Shell, an active-bending structure combining biocomposite profiles with a membrane outer skin, demonstrating their mechanical properties and suitability for such applications. The paper focuses on the geometrical and structural design development of the structure employing computational design tools for optimisation, ensuring design parameters and performance requirements were met. The final structure, a 10-m span doubly curved gridshell, features a continuous perimeter beam and consists of 44 profiles ranging from 6 to 12.5 m, showcasing the potential of natural fibre biocomposites as sustainable alternatives in construction.</div></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"20 \",\"pages\":\"Article 100577\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924002588\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924002588","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Geometrical and structural design development of an active-bending structure from natural fibre pultruded profiles: The LightPRO shell
The utilisation of bio-based materials has significantly increased in recent years, driven by a growing awareness of environmentally friendly alternatives in the construction industry. This study introduces innovative natural fibre pultruded profiles for load-bearing applications in structural systems. By employing pultrusion technology with flax fibres and customised plant-based matrix, linear and unidirectional biocomposite profiles were developed. These profiles were used in the creation of LightPRO Shell, an active-bending structure combining biocomposite profiles with a membrane outer skin, demonstrating their mechanical properties and suitability for such applications. The paper focuses on the geometrical and structural design development of the structure employing computational design tools for optimisation, ensuring design parameters and performance requirements were met. The final structure, a 10-m span doubly curved gridshell, features a continuous perimeter beam and consists of 44 profiles ranging from 6 to 12.5 m, showcasing the potential of natural fibre biocomposites as sustainable alternatives in construction.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.