{"title":"在原行星盘中通过烧结生长非晶态冰粒","authors":"Sin-iti Sirono","doi":"10.1016/j.icarus.2024.116370","DOIUrl":null,"url":null,"abstract":"<div><div>An icy grain in a protoplanetary nebula mainly consists of amorphous H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O ice and can grow through the migration of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O molecules (sintering). The growth rate through sintering strongly depends on the diffusion constant of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O molecules. I estimated the size of amorphous ice grains as a function of the sintering duration based on the diffusion constant of amorphous ice determined by the molecular dynamics simulation. It has been found that the growth proceeds in a wide disk region (<span><math><mrow><mo>∼</mo><mn>20</mn><mspace></mspace></mrow></math></span>AU), and grain can grow to <span><math><mrow><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace></mspace></mrow></math></span>cm around the snowline. The growth of the icy grains can affect the evolution of the icy dust aggregates in a protoplanetary disk.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"427 ","pages":"Article 116370"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth of amorphous ice grains by sintering in a protoplanetary disk\",\"authors\":\"Sin-iti Sirono\",\"doi\":\"10.1016/j.icarus.2024.116370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An icy grain in a protoplanetary nebula mainly consists of amorphous H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O ice and can grow through the migration of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O molecules (sintering). The growth rate through sintering strongly depends on the diffusion constant of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O molecules. I estimated the size of amorphous ice grains as a function of the sintering duration based on the diffusion constant of amorphous ice determined by the molecular dynamics simulation. It has been found that the growth proceeds in a wide disk region (<span><math><mrow><mo>∼</mo><mn>20</mn><mspace></mspace></mrow></math></span>AU), and grain can grow to <span><math><mrow><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace></mspace></mrow></math></span>cm around the snowline. The growth of the icy grains can affect the evolution of the icy dust aggregates in a protoplanetary disk.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"427 \",\"pages\":\"Article 116370\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524004305\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004305","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Growth of amorphous ice grains by sintering in a protoplanetary disk
An icy grain in a protoplanetary nebula mainly consists of amorphous HO ice and can grow through the migration of HO molecules (sintering). The growth rate through sintering strongly depends on the diffusion constant of HO molecules. I estimated the size of amorphous ice grains as a function of the sintering duration based on the diffusion constant of amorphous ice determined by the molecular dynamics simulation. It has been found that the growth proceeds in a wide disk region (AU), and grain can grow to cm around the snowline. The growth of the icy grains can affect the evolution of the icy dust aggregates in a protoplanetary disk.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.