利用 DFT 和 SCAPS-1D 对新型无铅 FrGeCl3 包晶太阳能电池进行计算分析的启示

IF 4.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Communications Pub Date : 2024-11-20 DOI:10.1016/j.inoche.2024.113578
Md.Shahriar Rahman , Apon Kumar Datta , Sahjahan Islam , Md.Mahmudul Hasan , Ushna Das , M.Abu Sayed , Md.Ferdous Wahid , Avijit Ghosh , Dipika Das Ria
{"title":"利用 DFT 和 SCAPS-1D 对新型无铅 FrGeCl3 包晶太阳能电池进行计算分析的启示","authors":"Md.Shahriar Rahman ,&nbsp;Apon Kumar Datta ,&nbsp;Sahjahan Islam ,&nbsp;Md.Mahmudul Hasan ,&nbsp;Ushna Das ,&nbsp;M.Abu Sayed ,&nbsp;Md.Ferdous Wahid ,&nbsp;Avijit Ghosh ,&nbsp;Dipika Das Ria","doi":"10.1016/j.inoche.2024.113578","DOIUrl":null,"url":null,"abstract":"<div><div>Although inorganic metal-halide perovskite solar cells (PSCs) have acquired major strides, the reliance on lead (Pb)-based materials remains a major drawback due to Pb’s toxicity. To explore safer alternatives, this study examines the opto-electronic characteristics of lead-free cubic perovskite FrGeCl<sub>3</sub> using first-principles density functional theory (DFT) to appraise its suitability for photovoltaic (PV) applications. The cubic FrGeCl<sub>3</sub> demonstrated thermodynamic stability with a negative formation energy. Using Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA), key properties were derived and incorporated into the SCAPS-1D simulation framework. Various configurations were tested using SnS<sub>2</sub> and ZnSe as electron transport layers (ETLs) and V<sub>2</sub>O<sub>5</sub>, CuSCN, and SrCu<sub>2</sub>O<sub>2</sub> as hole transport layers (HTLs). The most favorable performance came from the Back Contact/CuSCN/FrGeCl<sub>3</sub>/ZnSe/FTO configuration, resulting in a power conversion efficiency (PCE) of 29.39 %. Further optimizations on thickness, interface defect density, doping concentration, and defect concentration led to substantial performance improvements. The role of parasitic resistance in PSC performance was also evaluated. Carbon (C) was proposed as the back contact material. Simulation results yielded promising metrics, including an open-circuit voltage (V<sub>OC</sub>) of 0.859 V, a short-circuit current density (J<sub>SC</sub>) of 42.401 mA/cm<sup>2</sup>, a fill factor (FF) of 82.06 %, and a notable PCE of 29.88 %. This research may contribute significant understanding toward the experimental advancement of FrGeCl<sub>3</sub>-based PSCs, aiming to improve performance and efficacy in PV technologies.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113578"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights from computational analysis on novel Lead-Free FrGeCl3 perovskite solar cell using DFT and SCAPS-1D\",\"authors\":\"Md.Shahriar Rahman ,&nbsp;Apon Kumar Datta ,&nbsp;Sahjahan Islam ,&nbsp;Md.Mahmudul Hasan ,&nbsp;Ushna Das ,&nbsp;M.Abu Sayed ,&nbsp;Md.Ferdous Wahid ,&nbsp;Avijit Ghosh ,&nbsp;Dipika Das Ria\",\"doi\":\"10.1016/j.inoche.2024.113578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although inorganic metal-halide perovskite solar cells (PSCs) have acquired major strides, the reliance on lead (Pb)-based materials remains a major drawback due to Pb’s toxicity. To explore safer alternatives, this study examines the opto-electronic characteristics of lead-free cubic perovskite FrGeCl<sub>3</sub> using first-principles density functional theory (DFT) to appraise its suitability for photovoltaic (PV) applications. The cubic FrGeCl<sub>3</sub> demonstrated thermodynamic stability with a negative formation energy. Using Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA), key properties were derived and incorporated into the SCAPS-1D simulation framework. Various configurations were tested using SnS<sub>2</sub> and ZnSe as electron transport layers (ETLs) and V<sub>2</sub>O<sub>5</sub>, CuSCN, and SrCu<sub>2</sub>O<sub>2</sub> as hole transport layers (HTLs). The most favorable performance came from the Back Contact/CuSCN/FrGeCl<sub>3</sub>/ZnSe/FTO configuration, resulting in a power conversion efficiency (PCE) of 29.39 %. Further optimizations on thickness, interface defect density, doping concentration, and defect concentration led to substantial performance improvements. The role of parasitic resistance in PSC performance was also evaluated. Carbon (C) was proposed as the back contact material. Simulation results yielded promising metrics, including an open-circuit voltage (V<sub>OC</sub>) of 0.859 V, a short-circuit current density (J<sub>SC</sub>) of 42.401 mA/cm<sup>2</sup>, a fill factor (FF) of 82.06 %, and a notable PCE of 29.88 %. This research may contribute significant understanding toward the experimental advancement of FrGeCl<sub>3</sub>-based PSCs, aiming to improve performance and efficacy in PV technologies.</div></div>\",\"PeriodicalId\":13609,\"journal\":{\"name\":\"Inorganic Chemistry Communications\",\"volume\":\"171 \",\"pages\":\"Article 113578\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387700324015685\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324015685","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

虽然无机金属卤化物包晶体太阳能电池(PSCs)取得了长足的进步,但由于铅的毒性,对铅(Pb)基材料的依赖仍然是一个主要缺点。为了探索更安全的替代品,本研究采用第一原理密度泛函理论(DFT)研究了无铅立方包晶FrGeCl3的光电特性,以评估其在光伏(PV)应用中的适用性。立方FrGeCl3表现出热力学稳定性,其形成能为负值。利用 Perdew-Burke-Ernzerhof (PBE) 广义梯度近似 (GGA),得出了其关键特性,并将其纳入 SCAPS-1D 模拟框架。使用 SnS2 和 ZnSe 作为电子传输层 (ETL),V2O5、CuSCN 和 SrCu2O2 作为空穴传输层 (HTL) 测试了各种配置。背面接触/CuSCN/FrGeCl3/ZnSe/FTO 配置的性能最出色,功率转换效率 (PCE) 达到 29.39%。进一步优化厚度、界面缺陷密度、掺杂浓度和缺陷浓度后,性能有了大幅提高。此外,还评估了寄生电阻在 PSC 性能中的作用。建议使用碳(C)作为背接触材料。模拟结果得出了很有前途的指标,包括 0.859 V 的开路电压 (VOC)、42.401 mA/cm2 的短路电流密度 (JSC)、82.06 % 的填充因子 (FF) 和 29.88 % 的显著 PCE。这项研究可能会对基于 FrGeCl3 的 PSC 的实验进展产生重大影响,从而提高光伏技术的性能和功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights from computational analysis on novel Lead-Free FrGeCl3 perovskite solar cell using DFT and SCAPS-1D
Although inorganic metal-halide perovskite solar cells (PSCs) have acquired major strides, the reliance on lead (Pb)-based materials remains a major drawback due to Pb’s toxicity. To explore safer alternatives, this study examines the opto-electronic characteristics of lead-free cubic perovskite FrGeCl3 using first-principles density functional theory (DFT) to appraise its suitability for photovoltaic (PV) applications. The cubic FrGeCl3 demonstrated thermodynamic stability with a negative formation energy. Using Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA), key properties were derived and incorporated into the SCAPS-1D simulation framework. Various configurations were tested using SnS2 and ZnSe as electron transport layers (ETLs) and V2O5, CuSCN, and SrCu2O2 as hole transport layers (HTLs). The most favorable performance came from the Back Contact/CuSCN/FrGeCl3/ZnSe/FTO configuration, resulting in a power conversion efficiency (PCE) of 29.39 %. Further optimizations on thickness, interface defect density, doping concentration, and defect concentration led to substantial performance improvements. The role of parasitic resistance in PSC performance was also evaluated. Carbon (C) was proposed as the back contact material. Simulation results yielded promising metrics, including an open-circuit voltage (VOC) of 0.859 V, a short-circuit current density (JSC) of 42.401 mA/cm2, a fill factor (FF) of 82.06 %, and a notable PCE of 29.88 %. This research may contribute significant understanding toward the experimental advancement of FrGeCl3-based PSCs, aiming to improve performance and efficacy in PV technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
期刊最新文献
A comprehensive analysis of structural, electronic, optical, mechanical, thermodynamic, and thermoelectric properties of direct band gap Sr3BF3 (B = As, Sb) photovoltaic compounds: DFT-GGA and mBJ approach Insights from computational analysis on novel Lead-Free FrGeCl3 perovskite solar cell using DFT and SCAPS-1D Effective removal of tetracycline hydrochloride from wastewater over porous Co3O4@NC/honeycomb ceramics by Fenton-like catalysis A simple preparation method of Ti/TiO2/BiVO4 and implications for enhanced photoelectrocatalytic performance under visible light illumination Highly sensitive, selective and rapid in-vitro electrochemical sensing of dopamine achieved on oxygen deficient nickel oxide/partially reduced graphene oxide (NiOx/p-rGO) nanocomposite platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1