Ana-Maria Badea , Doina Manaila-Maximean , Laurentiu Fara , Dan Craciunescu
{"title":"太阳能光伏发电能源效率最大化:基于遮阳效应的 MPPT 技术研究","authors":"Ana-Maria Badea , Doina Manaila-Maximean , Laurentiu Fara , Dan Craciunescu","doi":"10.1016/j.solener.2024.113082","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a comprehensive study focused on understanding and optimizing the behavior of a photovoltaic (PV) generator. The study explores Maximum Power Point Tracking (MPPT), a critical technique used to optimize the energy output of a PV generator by dynamically adjusting under varying conditions of solar irradiance and temperature, ensuring that the PV generator operates at its most efficient level. By also accounting for shading effects, which can significantly impact energy production and overall performance, this research includes a detailed analysis of the shading effects on the illuminated area based on optimization-MPPT algorithms. Advanced modeling and simulation techniques are employed, with a particular emphasis on the Levenberg-Marquardt method for parameter estimation. This method is used to fit mathematical models to experimental PV generator data and extract relevant parameters. Additionally, the study leverages the “Curve Fitting Toolbox” method in MATLAB to fit mathematical models for experimental I-V and P-V data. The investigation utilizes an industrial polycrystalline silicon PV module and compares simulated results with experimental data. One significant aspect of the analysis is the examination of partial shading’s impact on the PV generator. The results highlighted that partial shading poses a substantial challenge to the PV system, leading to a notable reduction in power output. The study presents various techniques for Maximum Power Point Tracking (MPPT) and analyzes their capabilities and performance metrics. The research methodology involves a combination of simulated and experimental data to understand how PV panels behave under different shading conditions. Furthermore, the study proposes an optimized configuration and advanced MPPT algorithms to enhance system performance in the presence of partial shading. The optimized setup not only increases power output but also enhances overall system efficiency and reliability by mitigating issues such as shading-induced hotspots and potential panel failures. The findings and strategies outlined in this study could be adapted and applied to various types of PV modules.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"285 ","pages":"Article 113082"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing solar photovoltaic energy efficiency: MPPT techniques investigation based on shading effects\",\"authors\":\"Ana-Maria Badea , Doina Manaila-Maximean , Laurentiu Fara , Dan Craciunescu\",\"doi\":\"10.1016/j.solener.2024.113082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents a comprehensive study focused on understanding and optimizing the behavior of a photovoltaic (PV) generator. The study explores Maximum Power Point Tracking (MPPT), a critical technique used to optimize the energy output of a PV generator by dynamically adjusting under varying conditions of solar irradiance and temperature, ensuring that the PV generator operates at its most efficient level. By also accounting for shading effects, which can significantly impact energy production and overall performance, this research includes a detailed analysis of the shading effects on the illuminated area based on optimization-MPPT algorithms. Advanced modeling and simulation techniques are employed, with a particular emphasis on the Levenberg-Marquardt method for parameter estimation. This method is used to fit mathematical models to experimental PV generator data and extract relevant parameters. Additionally, the study leverages the “Curve Fitting Toolbox” method in MATLAB to fit mathematical models for experimental I-V and P-V data. The investigation utilizes an industrial polycrystalline silicon PV module and compares simulated results with experimental data. One significant aspect of the analysis is the examination of partial shading’s impact on the PV generator. The results highlighted that partial shading poses a substantial challenge to the PV system, leading to a notable reduction in power output. The study presents various techniques for Maximum Power Point Tracking (MPPT) and analyzes their capabilities and performance metrics. The research methodology involves a combination of simulated and experimental data to understand how PV panels behave under different shading conditions. Furthermore, the study proposes an optimized configuration and advanced MPPT algorithms to enhance system performance in the presence of partial shading. The optimized setup not only increases power output but also enhances overall system efficiency and reliability by mitigating issues such as shading-induced hotspots and potential panel failures. The findings and strategies outlined in this study could be adapted and applied to various types of PV modules.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"285 \",\"pages\":\"Article 113082\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X24007771\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007771","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Maximizing solar photovoltaic energy efficiency: MPPT techniques investigation based on shading effects
This article presents a comprehensive study focused on understanding and optimizing the behavior of a photovoltaic (PV) generator. The study explores Maximum Power Point Tracking (MPPT), a critical technique used to optimize the energy output of a PV generator by dynamically adjusting under varying conditions of solar irradiance and temperature, ensuring that the PV generator operates at its most efficient level. By also accounting for shading effects, which can significantly impact energy production and overall performance, this research includes a detailed analysis of the shading effects on the illuminated area based on optimization-MPPT algorithms. Advanced modeling and simulation techniques are employed, with a particular emphasis on the Levenberg-Marquardt method for parameter estimation. This method is used to fit mathematical models to experimental PV generator data and extract relevant parameters. Additionally, the study leverages the “Curve Fitting Toolbox” method in MATLAB to fit mathematical models for experimental I-V and P-V data. The investigation utilizes an industrial polycrystalline silicon PV module and compares simulated results with experimental data. One significant aspect of the analysis is the examination of partial shading’s impact on the PV generator. The results highlighted that partial shading poses a substantial challenge to the PV system, leading to a notable reduction in power output. The study presents various techniques for Maximum Power Point Tracking (MPPT) and analyzes their capabilities and performance metrics. The research methodology involves a combination of simulated and experimental data to understand how PV panels behave under different shading conditions. Furthermore, the study proposes an optimized configuration and advanced MPPT algorithms to enhance system performance in the presence of partial shading. The optimized setup not only increases power output but also enhances overall system efficiency and reliability by mitigating issues such as shading-induced hotspots and potential panel failures. The findings and strategies outlined in this study could be adapted and applied to various types of PV modules.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass