热压烧结温度和压力对钛-钛硼复合材料致密化和性能的影响

Padiri Murali, Kausik Chattopadhyay, Vikas Jindal
{"title":"热压烧结温度和压力对钛-钛硼复合材料致密化和性能的影响","authors":"Padiri Murali,&nbsp;Kausik Chattopadhyay,&nbsp;Vikas Jindal","doi":"10.1016/j.jalmes.2024.100132","DOIUrl":null,"url":null,"abstract":"<div><div>Ti/TiB composites exhibit promising potential for applications in the automotive, aerospace, and biomedical sectors. Hot pressing coupled with in situ reaction synthesis is a commonly employed technique for fabricating discontinuously TiB-reinforced titanium matrix composites. Despite its efficacy, comprehensive research investigating the influence of hot-pressing process parameters on the densification and properties of these composites remains scarce. This study systematically examined the effects of pressure (16–48 MPa) and temperature (1250 °C to 1350 °C) on the density, microstructure, and mechanical properties of Ti/TiB composites produced through hot pressing. By analyzing densification curves and rate curves, the densification behavior under varying processing conditions was elucidated. The results indicate that elevated sintering temperatures and pressures correlate with increased densification rates, reduced porosity, and enhanced sample density. A strong relationship between relative densities and hardness was observed. This research contributes to a deeper understanding of the hot-pressing sintering process for Ti-TiB composites and facilitates the optimization of processing conditions.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of hot-pressing sintering temperature and pressure on the densification and properties of Ti-TiB composites\",\"authors\":\"Padiri Murali,&nbsp;Kausik Chattopadhyay,&nbsp;Vikas Jindal\",\"doi\":\"10.1016/j.jalmes.2024.100132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ti/TiB composites exhibit promising potential for applications in the automotive, aerospace, and biomedical sectors. Hot pressing coupled with in situ reaction synthesis is a commonly employed technique for fabricating discontinuously TiB-reinforced titanium matrix composites. Despite its efficacy, comprehensive research investigating the influence of hot-pressing process parameters on the densification and properties of these composites remains scarce. This study systematically examined the effects of pressure (16–48 MPa) and temperature (1250 °C to 1350 °C) on the density, microstructure, and mechanical properties of Ti/TiB composites produced through hot pressing. By analyzing densification curves and rate curves, the densification behavior under varying processing conditions was elucidated. The results indicate that elevated sintering temperatures and pressures correlate with increased densification rates, reduced porosity, and enhanced sample density. A strong relationship between relative densities and hardness was observed. This research contributes to a deeper understanding of the hot-pressing sintering process for Ti-TiB composites and facilitates the optimization of processing conditions.</div></div>\",\"PeriodicalId\":100753,\"journal\":{\"name\":\"Journal of Alloys and Metallurgical Systems\",\"volume\":\"8 \",\"pages\":\"Article 100132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Metallurgical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949917824000816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钛/钛硼复合材料在汽车、航空航天和生物医学领域的应用潜力巨大。热压结合原位反应合成是制造非连续 TiB 增强钛基复合材料的常用技术。尽管热压技术非常有效,但有关热压工艺参数对这些复合材料致密化和性能影响的综合研究仍然很少。本研究系统地考察了压力(16-48 兆帕)和温度(1250 ℃ 至 1350 ℃)对热压生产的钛/钛硼复合材料的密度、微观结构和机械性能的影响。通过分析致密化曲线和速率曲线,阐明了不同加工条件下的致密化行为。结果表明,烧结温度和压力的升高与致密化率的增加、孔隙率的降低和样品密度的提高相关。相对密度和硬度之间的关系也很密切。这项研究有助于加深对 Ti-TiB 复合材料热压烧结过程的理解,并有助于优化加工条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of hot-pressing sintering temperature and pressure on the densification and properties of Ti-TiB composites
Ti/TiB composites exhibit promising potential for applications in the automotive, aerospace, and biomedical sectors. Hot pressing coupled with in situ reaction synthesis is a commonly employed technique for fabricating discontinuously TiB-reinforced titanium matrix composites. Despite its efficacy, comprehensive research investigating the influence of hot-pressing process parameters on the densification and properties of these composites remains scarce. This study systematically examined the effects of pressure (16–48 MPa) and temperature (1250 °C to 1350 °C) on the density, microstructure, and mechanical properties of Ti/TiB composites produced through hot pressing. By analyzing densification curves and rate curves, the densification behavior under varying processing conditions was elucidated. The results indicate that elevated sintering temperatures and pressures correlate with increased densification rates, reduced porosity, and enhanced sample density. A strong relationship between relative densities and hardness was observed. This research contributes to a deeper understanding of the hot-pressing sintering process for Ti-TiB composites and facilitates the optimization of processing conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Thermo-microstructural-mechanical modeling of the effect of wire diameters on single-bead Ti-6Al-4V wall deposits by laser wire deposition Influence of heat treatment time on microstructure evolution of austempered nodular cast iron evaluated by image segmentation Mechanical alloying of bronze with aluminum and nickel: Impact on corrosion resistance and hardness Effect of minor addition of silicon on deformation behaviour and texture evolution in CrFeNi medium entropy alloy Microstructural evolution and mechanical properties of Cr–Ni–Mo–V steel with banded structure during tempering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1